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1 Scope 
This Technical Guidance Document (TGD 2c) is a specific topic document on specifications for and 

validation of geospatial accuracy in technology, system and product acquisition, part of a series of 

information and guidance documents regarding Accuracy and Predicted Accuracy in the National System 

for Geospatial Intelligence (NSG).  As the title suggests, it focuses on the need, methods, and practices 

to adequately specify and communicate the geospatial accuracy requirements for an acquisition activity 

and the validation processes to evaluate satisfaction of the demonstrated performance against those 

specifications within the context of a larger scope of work which includes a more generalized overview 

and additional topic specific technical guidance.  Documents in this series are listed below: 

TGD 1  Accuracy and Predicted Accuracy in the NSG:  Overview and Methodologies 

TGD 2a   Accuracy and Predicted Accuracy in the NSG: Predictive Statistics    

TGD 2b   Accuracy and Predicted Accuracy in the NSG: Sample Statistics    

TGD 2c   Accuracy and Predicted Accuracy in the NSG: Specification and Validation   

TGD 2d   Accuracy and Predicted Accuracy in the NSG: Estimators and Quality Control  

TGD 2e   Accuracy and Predicted Accuracy in the NSG: Monte-Carlo Simulation   

TGD 2f   Accuracy and Predicted Accuracy in the NSG: External Data and Quality Assessment 

The series is also supported by a compiled glossary of relevant terms: 

TGD 1-G  Accuracy and Predicted Accuracy in the NSG: Glossary of Terms 

All documents in the series, “Accuracy and Predicted Accuracy in the NSG”, are intended to provide 

technical guidance to inform the development of geospatial data accuracy characterization for NSG 

GEOINT collectors, producers and consumers -- accuracy characterization as required to describe the 

trustworthiness of geolocations for defense and intelligence use and to support practices that acquire, 

generate, process, exploit, and provide geolocation data and information based on geolocation data.  

Today, both the sources and desired uses for geospatial data are quickly expanding.  Throughout the 

NSG, trusted conveyance of geospatial accuracy is broadly required for a variety of traditional and 

evolving missions including those supported by manual, man-in-the-loop, and automated processes.  

This guidance is the foundation layer for a collection of common techniques, methods, and algorithms 

ensuring that geospatial data within the NSG can be clearly requested, delivered and evaluated as fit for 

desired purpose whether by decision makers, intelligence analysts, or as input to further processing 

techniques.   

TGD 2c contains references to and is referenced by other Technical Guidance Documents.  The 

documents in this series, TGD 1, TGD 2a - TGD 2b, and TGD 2d - TGD 2f, also have cross-references 
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among themselves.  All Technical Guidance Documents also reference external public as well as “NGA 

approved for public release” documents for further insight/details. 

The TGD 2 documents, including this document focused on specification and validation, are also 

considered somewhat top-level in that they are not directed at specific systems.  They do provide 

general guidance, technical insight, and recommended algorithms.  The relationship of the Technical 

Guidance Documents with specific GEOINT Standards documents and specific Program Requirements 

documents is presented in Figure 1-1, where arrows refer to references.  That is, in general, specific 

product requirement documents reference specific GEOINT standards documents which reference 

specific technical guidance documents. 

 

Figure 1-1: The relationships between the Technical Guidance Documents, GEOINT Standards 

Documents, and Program Requirement Documents 

Accuracy and Predicted Accuracy in the NSG: Specification and Validation, Technical Guidance 

Document (TGD) 2c is for guidance only and cannot be cited as a requirement. 

Specific NSG adopted 
GEOINT Standards 
for acquisition

Others
…

STANAG
…

TGD_1

TGD_2a TGD_2b TGD_2c TGD_2d TGD_2e TGD_2f

Technical Guidance Documents (TGD): Accuracy and Predicted Accuracy in the NSG

MIL-STD
…

NGA.STND.
…

Program 
Requirements 
Documents SOO

SOW
RFP
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2 Applicable Documents 
The documents listed below are not necessarily all of the documents referenced herein, but are those 

needed to understand the information provided by this information and guidance document. 

2.1 Government specifications, standards, and handbooks 
 

NGA.SIG.0026.01_1.0_ACCOVER, Accuracy and Predicted Accuracy in the NSG:  Overview and 

Methodologies, Technical Guidance Document (TGD) 1 

NGA.SIG.0026.02_1.0_ACCGLOS, Accuracy and Predicted Accuracy in the NSG:  Glossary of Terms, 

Technical Guidance Document (TGD) 1-G 

NGA.SIG.0026.03_1.0_ACCPRED, Accuracy and Predicted Accuracy in the NSG:  Predictive Statistics, 

Technical Guidance Document (TGD) 2a 

NGA.SIG.0026.04_1.0_ACCSAMP, Accuracy and Predicted Accuracy in the NSG:  Sample Statistics, 

Technical Guidance Document (TGD) 2b    

NGA.SIG.0026.06_1.0_ACCESQC, Accuracy and Predicted Accuracy in the NSG:  Estimators and Quality 

Control, Technical Guidance Document (TGD) 2d 

NGA.SIG.0026.07_1.0_ACCMTCO, Accuracy and Predicted Accuracy in the NSG: Monte-Carlo Simulation, 

Technical Guidance Document (TGD) 2e 

NGA.SIG.0026.08_1.0_ACCXDQA, Accuracy and Predicted Accuracy in the NSG: External Data and 

Quality Assessment, Technical Guidance Document (TGD) 2f 
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3 Definitions 
There are a number of authoritative guides as well as existing standards within the NSG and Department 
of Defense for definitions of the identified key terms used in this technical guidance document.  In many 
cases, the existing definitions provided by these sources are either too general or, in some cases, too 
narrow or dated by intended purposes contemporary to the document's development and publication.  
The definitions provided in this document have been expanded and refined to explicitly address details 
relevant to the current and desired future use of accuracy in the NSG.  To acknowledge the basis and/or 
lineage of certain terms in Section 3.1, we reference the following sources considered as either 
foundational or contributory: 
 
[a] Anderson, James M. and Mikhail, E., Surveying: Theory and Practice, 7th Edition, WCB/McGraw-Hill, 

1998. 

[b] DMA-TR-8400.1, DMA Technical Report: Error Theory as Applied to Mapping, Charting, and Geodesy. 

[c] Defense Mapping Agency, Glossary of Mapping, Charting, and Geodetic Terms, 4th Edition, Defense 

Mapping Agency Hydrographic/Topographic Center, 1981. 

[d] ISO TC/211 211n2047, Text for ISO 19111 Geographic Information - Spatial referencing by 

coordinates, as sent to the ISO Central Secretariat for issuing as FDIS, July 17, 2006. 

[e] Joint Publication (JP) 1-02, Department of Defense Dictionary of Military and Associated Terms, 

November 8, 2010 as amended through January 15, 2016. 

[f] MIL-HDBK-850, Military Handbook: Glossary of Mapping, Charting, and Geodetic Terms, January 21, 

1994. 

[g] MIL-STD-2401, Department of Defense Standard Practice; Department of Defense World Geodetic 

System (WGS), January 11, 1994  

[h] MIL-STD-600001, Department of Defense Standard Practice; Mapping, Charting and Geodesy 

Accuracy, February 26, 1990. 

[i] National System for Geospatial Intelligence [Brochure] Public Release Case #15-489. 

[j] NGA.STND.0046_1.0, The Generic Point-cloud Model (GPM): Implementation and Exploitation, 

Version 1.0, October 03, 2015. 

[k] Oxford Dictionaries (www.oxforddictionaries.com/us/) copyright © 2016 by Oxford University Press. 

[l] Soler, Tomas and Hothem, L., “Coordinate Systems Used in Geodesy: Basic Definitions and Concepts”, 
Journal of Surveying Engineering, Vol. 114, No. 2, May 1988. 

  

http://www.oxforddictionaries.com/us/
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3.1 Key Terms Used in the Document  

3.1.1 Accuracy 

The range of values for the error in an object’s metric value with respect to an accepted reference value 

expressed as a probability.  [f] 

 Statements of accuracy may be developed through applications of predictive statistics or by 

sample statistics based on multiple independent samples of errors. 

3.1.2 Circular Error 

See “Section 3.1.11  Scalar Accuracy Metrics”. 

3.1.3 Error 

The difference between the observed or estimated value and its ideal or true value.   See Appendix A for 

a more detailed and augmented definition. [f]     

3.1.4 Ground Truth   

The reference or (assumed) true value of a geolocation of a measured quantity (e.g. associated with an 

absolute geolocation, or a relative mensuration). 

3.1.5 Linear Error 

See “Section 3.1.11 Scalar Accuracy Metrics”. 

3.1.6 Monte-Carlo Simulation 

A technique in which a large number of independent sample inputs for a system are randomly 

generated using an assumed a priori statistical model to analyze corresponding system output samples 

statistically and support derivation of a statistical model of the system output.  This technique is 

valuable for complex systems, non-linear systems, and those where no insight to internal algorithms is 

provided (“black box” systems). 

3.1.7 National System for Geospatial Intelligence (NSG) 

The operating framework supported by producers, consumers or influencers of geospatial intelligence 

(GEOINT).  Spanning defense, intelligence, civil, commercial, academic and international sectors, the 

NSG contributes to the overall advancement of the GEOINT function within the strategic priorities 

identified by the Functional Manager for Geospatial Intelligence in the role established by Executive 

Order 12333.  The framework facilitates community strategy, policy, governance, standards and 

requirements to ensure responsive, integrated national security capabilities. [i] 
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3.1.8 Predicted Accuracy 

The range of values for the error in a specific object’s metric value expressed as a probability derived 

from an underlying and accompanying detailed statistical error model.  

 If the statistical error model does not include the identification of a specific probability 

distribution, a Gaussian (or Normal) probability distribution is typically assumed in order to 

generate probabilities.  

 The term “Predicted” in Predicted Accuracy corresponds to the use of predictive statistics in the 

detailed statistical error model; it does not correspond to a prediction of accuracy applicable to 

the future since the corresponding error corresponds to a geolocation already extracted.  

3.1.9 Predictive Statistics 

Statistics corresponding to the mathematical modeling of assumed a priori error characteristics 

contained in a statistical error model. 

3.1.10 Sample Statistics 

Statistics corresponding to the analysis of a collection of physical observations, a sample of the 

population, as compared to an assumed true or an a priori value. 

3.1.11 Scalar Accuracy Metrics 

Convenient one-number summaries of geolocation accuracy and geolocation predicted accuracy 

expressed as a probability: (1) Linear Error (LE) corresponds to 90% probable vertical error, (2) Circular 

Error (CE) correspond to 90% probable horizontal radial error, and (3) Spherical Error (SE) corresponds 

to 90% spherical radial error. [b],[f],and [h] See Appendix A for a more detailed and augmented 

definition.  

3.1.12 Statistical Error Model 

Information which describes the error data corresponding to a given state vector.  The information 

includes the type of corresponding error representation (random variable, random vector, stochastic 

process, or random process), the category of statistics (predictive or sample), and associated statistical 

information including at a minimum the mean-value and covariance data. 

3.1.13 Validation 

The process of determining the degree to which a model is an accurate representation of the real world 

from the perspective of its intended use/s. In the NSG, this includes validation of accuracy and predicted 

accuracy specified capabilities. [e] 
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3.2 Other Relevant Terms 
Appendix A contains definitions of the following additional terms relevant to the content of this 

document: 

 A priori  

 A posteriori  

 Absolute Horizontal Accuracy 

 Absolute Vertical Accuracy 

 Bias Error  

 Confidence Ellipsoid 

 Confidence Interval 

 Confidence Interval (Order Statistics) 

 Correlated Error  

 Correlated Values 

 Covariance 

 Covariance Matrix 

 Cross-covariance Matrix 

 Error (augmented definition) 

 Error Ellipsoid 

 Estimator 

 Gaussian (or Normal) probability 

distribution 

 Horizontal Error 

 Inter-state vector correlation 

 Intra-state vector correlation 

 Least-upper-bound (lub) 

 Local Tangent Plane Coordinate System  

 Mean-Value 

 Multi-Image Geopositioning (MIG) 

 Order Statistics 

 Percentile  

 Precision 

 Probability density function (pdf) 

 Probability distribution 

 Probability distribution function (cdf) 

 Radial Error 

 Random Error 

 Random Error Vector 

 Random Variable 

 Random Vector  

 Realization 

 Relative Horizontal Accuracy 

 Relative Vertical Accuracy 

 Rigorous Error Propagation  

 Scalar Accuracy Metrics (augmented 

definition) 

 Standard Deviation 

 State Vector 

 State Vector Error 

 Uncertainty 

 Uncorrelated Error 

 Uncorrelated Values 

 Variance 

 Vertical Error
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3.3 Abbreviations and Acronyms 
Abbreviation/Acronym Definition 

1d One Dimensional 

2d Two Dimensional 

3d Three Dimensional 

CE Circular Error 

ENU  East North Up 

EO Electro-optical 

GWG Geospatial Intelligence Standards Working Group 

i.i.d. independent and identically distributed 

LE Linear Error 

lub least-upper-bound 

MIG Multi-Image Geopositioning 

NSG National System for Geospatial Intelligence 

rmse root-mean-square error 

SE Spherical Error 

TGD Technical Guidance Document 

WGS World Geodetic System 

WGSG World Geodetic System and Geomatics 
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4 Introduction to Specification and Validation of Accuracy and 

Predicted Accuracy in the NSG 
This document presents detailed technical guidance regarding the specification and validation of 

accuracy requirements as well as predicted accuracy requirements in the NSG.  The default accuracy 

addressed is absolute accuracy, although relative accuracy is considered as well.  For a little more 

context, the definitions of (absolute) accuracy and (absolute) predicted accuracy are as follows: 

Accuracy in the NSG is defined as: “the range of values for the error in an object’s metric value 

expressed as a probability”.  Furthermore, this general definition can be sub-allocated to more specific 

accuracies.  For example, we can define horizontal accuracy for a specific system as:  “the 90th percentile 

of horizontal (radial) geolocation error, where location is relative to a specified geodetic reference 

system”. 

Predicted accuracy in the NSG is defined as: “the range of values for the error in a specific object’s 

metric value expressed as a probability derived from an underlying and accompanying detailed 

statistical error model.”  The detailed statistical error model includes predictive statistics, with the key 

statistic being the predicted error covariance matrix relative to the error in the object’s metric value – 

typically the 3d error in a specific extracted geolocation. 

A top-level discussion of accuracy and predicted accuracy in the NSG is provided in TGD 1: “Accuracy and 

Predicted Accuracy in the NSG: Overview and Methodologies”.  Both accuracy and predicted accuracy 

are critical to overall operational performance.   

In addition, the proper operational representation, use, and metric values associated with both accuracy 

and predicted accuracy in an NSG system extend to the system’s specification of performance 

requirements and their validation.  Without proper specification and validation, performance cannot be 

planned, developed, demonstrated, or maintained.  In general, accuracy and predicted accuracy refer to 

3d geolocation error, the error in the “end product” of an NSG geolocation system.   

TGD 1 presents an overview of this specification and validation process for a typical NSG geolocation 

system consisting of three generic top-level modules: Collection, Value-added Processing, and 

Exploitation, as summarized in Figure 4-1 below.  The 𝑋𝑖  and 𝐶𝜖𝑋𝑖
 in the figure correspond to 

independent samples of 3d geolocations and corresponding 3𝑥3 predicted error covariance matrices, 

respectively, typically generated by an (near) optimal extraction process that necessarily outputs both.  

(For example, a Weighted Least Squares unbiased estimator with rigorous error propagation – see 

Section 5.8.1 of TGD 1.)  For additional details on this overall top-level specification and validation 

process, see Section 5.1 of TGD 1. 

 

 



NGA.SIG.0026.05_1.0_ACCSPEC 

 
 

10 

 

Figure 4-1: Specification and Validation of Accuracy and Predicted Accuracy  

for an NSG Geolocation System 

 

This document concentrates on the recommended procedures, algorithms, and equations associated 

with the lower half (below the gray box) of the above figure.  Both accuracy and predicted accuracy are 

assessed.  Both assessments rely on independent error samples 𝜖𝑋𝑖 generated by differencing the 

geolocations 𝑋𝑖  from available “ground truth” (accurate surveyed locations).  In addition, the 

assessment of predicted accuracy relies on the geolocations’ corresponding predicted error covariance 

matrices 𝐶𝜖𝑋𝑖
 in order to generate normalized error samples at various levels of probability. 

This document also examines and addresses the potential for Type I and Type II errors in validation of an 

NSG Geolocation System.  In general, Type I validation errors refer to validation of a system that should 

pass but incorrectly fails and Type II validation errors refer to validation of a system that should fail but 

incorrectly passes.  The specific character and methods for mitigating Type I and Type II errors in 

Collection
Value-Added 
Processing

Exploitation

SC SP SE

Trusted 
Exploitation 
Application

and from Exploitation Module, containing:
Point location estimates: , …
Predictive stats:  

Point location error covariance , …

Point-pair location error cross-covariance , …Ground 
Truth

X
Performance 
Specifications

(Accuracy, Predicted 
Accuracy, etc.)

Test Report
(pass, fail)

Compile 
Statistics 

(loop over i)

( ) and ( ) 

Error Sample:  

Predictive Statistics: , …

, …

Calculate and compare:



NGA.SIG.0026.05_1.0_ACCSPEC 

 
 

11 

validation of accuracy and of predicted accuracy differ and are discussed individually within the 

respective sections. 

Sections 4.1 and 4.2 now go on to present a more detailed overview of the above specification and 

validation processes.  Section 4.3 then provides a detailed technical guide to the contents of Section 5, 

which presents specific details of the specification and validation processes.  These processes also 

support the following top-level principles implemented throughout this document: 

 Specification and validation of predicted accuracy should be performed in addition to the 

specification and validation of accuracy 

 The specifications of accuracy and predicted accuracy (performance) should also take into 

consideration and address their corresponding validations 

 Appropriate i.i.d. (independent and identically distributed) error samples should be used in the 

validation processes 

 Validation processes should be practical and realistic – not just based on theory 

 Validation processes should include confidence metrics 

Finally, the following summarizes top-level definitions/symbology for various geolocation errors used 

throughout the remainder of the document.  The error components 𝜖𝑥, 𝜖𝑦, and 𝜖𝑧 are assumed to 

correspond to a local tangent plane coordinate system, such as East-North-Up (ENU), the symbol 

superscript “𝑇” corresponds to “vector transpose”, and the symbol “≡” corresponds to “defined as”: 

 Vertical error       𝜖𝑋 ≡ [𝜖𝑧]   Vertical radial error        𝜖𝑣 ≡ √𝜖𝑧2       (4-1) 

 Horizontal error  𝜖𝑋 ≡ [𝜖𝑥 𝜖𝑦]𝑇  Horizontal radial error 𝜖ℎ ≡ √𝜖𝑥2 + 𝜖𝑦2 

 3d error    𝜖𝑋 ≡ [𝜖𝑥 𝜖𝑦 𝜖𝑧]𝑇  3d radial error    𝜖𝑟 ≡ √𝜖𝑥2 + 𝜖𝑦2 + 𝜖𝑧2 

 

 

4.1 Overview of Specification & Validation of Accuracy Requirements 
The specification and validation of accuracy of an NSG geolocation system is straightforward and 

involves requirements represented using the ubiquitous scalar accuracy metrics LE_XX, CE_XX, and 

SE_XX, which are equivalent to the XX percentile of vertical, horizontal, and 3d radial errors, 

respectively, where XX = 50, 90, or 95%.  Corresponding radial error samples are used for validation of 

the accuracy requirement. 

The following overview addresses horizontal accuracy for specificity, and in particular, the 

recommended form for its specification and the recommended procedure for its validation.  However, 

as detailed in Section 5.1, any combination of vertical, horizontal, and 3d accuracy can be specified and 

validated in a similar manner. 
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The specification of horizontal accuracy for an NSG geolocation system is as follows: 

Specification of horizontal accuracy requirements 

Horizontal geolocations shall satisfy the following: 

𝜖ℎ𝑋𝑋 ≤ 𝐶𝐸𝑋𝑋𝑠𝑝𝑒𝑐, where              (4.1-1) 

𝜖ℎ ≡ √𝜖𝑥2 + 𝜖𝑦2  is defined as horizontal radial error (always positive unlike the horizontal error 

components 𝜖𝑥 and 𝜖𝑦),  

𝜖ℎ𝑋𝑋 is the 𝑋𝑋 percentile of the random variable 𝜖ℎ, i.e., 𝑝𝑟𝑜𝑏{𝜖ℎ ≤ 𝜖ℎ𝑋𝑋} = 0.𝑋𝑋, and 

𝐶𝐸𝑋𝑋𝑠𝑝𝑒𝑐 is the specified value for horizontal circular error at the 𝑋𝑋% probability (percentile) level, 

where 𝑋𝑋=50%, 90%, or 95% , with 90% the default.    

 

Note:  𝜖ℎ𝑋𝑋 is also termed the 𝑋𝑋 percentile of horizontal radial error. 

Note: 𝐶𝐸𝑋𝑋 is defined identical to the definition of 𝜖ℎ𝑋𝑋; the use of 𝐶𝐸𝑋𝑋𝑠𝑝𝑒𝑐 in Equation (4.1-1) for 

the specified requirement instead of an equivalent  𝜖ℎ𝑋𝑋𝑠𝑝𝑒𝑐  is due primarily to legacy convention. 

 

The above specification can also be written in the equivalent form (at the default probability or 

percentile level 𝑋𝑋 = 90 in the following example): 

𝑝𝑟𝑜𝑏{𝜖ℎ ≤ 𝐶𝐸90𝑠𝑝𝑒𝑐} ≥ 0.90.         (4.1-2) 

Thus, it is at least 90% probable that horizontal radial error for an arbitrary extraction is less than the 

specified value 𝐶𝐸90𝑠𝑝𝑒𝑐. 

 

The specified value  𝐶𝐸90𝑠𝑝𝑒𝑐 is NSG-system specific.  For example, for an NSG geolocation system 

based on commercial satellite imagery, a possible value for 𝐶𝐸90𝑠𝑝𝑒𝑐 is 5.5 meters. 

The use of root-mean-square error (rmse) instead of scalar accuracy metrics is not recommended for the 

specification and validation of accuracy as explained later in this section.  If need be, rmse can be 

approximately converted to equivalent scalar accuracy metrics. 

The specification of accuracy requirements includes a top-level description of the assumed operational 

scenario (constraints) for geolocation extraction, e.g., imaging angles for commercial satellite imagery – 

see Section 5 for more details. 
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Validation of horizontal accuracy requirements 

The recommended process for the validation of the above specification (Equation (4.1-1)) is based on 

order statistics which are applicable to an arbitrary (unknown) probability distribution of the underlying 

(𝜖𝑥 and 𝜖𝑦) errors – a mean-value of zero and/or a Gaussian probability distribution are not required – a 

desirable and robust feature. 

In particular, given a set of i.i.d. horizontal radial error samples {𝜖ℎ𝑘 , 𝑘 = 1, . . , 𝑛}, the (probabilistic) 

least-upper-bound (lub) of the percentile 𝜖ℎ𝑋𝑋 is computed: 𝑙𝑢𝑏_𝜖ℎ𝑋𝑋.  Furthermore, it is computed at a 

specified (minimum) level of confidence (or probability) 𝑌𝑌 (%).   

Thus, by definition of lub: 

𝑝𝑟𝑜𝑏{𝜖ℎ𝑋𝑋 < 𝑙𝑢𝑏_𝜖ℎ𝑋𝑋} ≥ 0. 𝑌𝑌,        (4.1-3) 

with the default confidence-level 𝑌𝑌 equal to 90% (see Appendix A of this document for a formal 

definition of lub and TGD 2b, Section 5.3.6 for more detailed discussion).   

In particular, during validation the least-upper-bound 𝑙𝑢𝑏_𝜖ℎ𝑋𝑋 is set equal to the smallest ordered 

sample value (ordered by ascending magnitude) of horizontal radial error such that Equation (4.1-3) is 

satisfied.  Thus, we are at least 90% confident that the true (and unknown) value of 𝜖ℎ𝑋𝑋 is less than the 

computed value 𝑙𝑢𝑏_𝜖ℎ𝑋𝑋.  The percentile level and the confidence level can be specified 

independently, both with default values of 90%.  And finally, if the computed 𝑙𝑢𝑏_𝜖ℎ𝑋𝑋 ≤ 𝐶𝐸𝑠𝑝𝑒𝑐, 

validation is successful.  On the other hand, if the computed 𝑙𝑢𝑏_𝜖ℎ𝑋𝑋 > 𝐶𝐸𝑠𝑝𝑒𝑐, validation fails. 

The use of a least-upper-bound (one-sided confidence interval) is critical for the validation of accuracy, 

as the NSG must have confidence in its results. 

(Note: as detailed later in Section 5.1, the least-upper-bound can be computed for either vertical, 

horizontal, or 3d radial errors, computed for either 50, 90, or 95% (𝑋𝑋) percentiles, and computed at 

either 50, 90, or 95% confidence levels (𝑌𝑌)). 

Validation of accuracy requirements is “plot friendly” 

The above validation process is simple, straight-forward, and “plot-friendly” for additional insight and 

confidence in the validation results.  This is illustrated in Figure 4.1-1 corresponding to 𝑛 = 100 i.i.d. 

error samples.  The blue circles correspond to the samples 𝜖ℎ𝑘 of horizontal radial error, the magenta 

line the value 𝑙𝑢𝑏_𝜖ℎ90 computed from these samples, and the dotted red-line the best estimate of 𝜖ℎ90 

computed from these samples as well for ancillary information.  The best estimate of 𝜖ℎ90 corresponds 

to the value of the 90th ordered sample and the least-upper-bound 𝑙𝑢𝑏_𝜖ℎ90 corresponds to the value of 

the 95th ordered sample (samples ordered by ascending magnitude, not as shown in Figure 4.1-1).   Note 

that selection of the 90th ordered sample for the best estimate of 𝜖ℎ90 corresponds to (0.90 percentile x 

100 order samples) = 90.  The least-upper-bound 𝑙𝑢𝑏_𝜖ℎ90 contains an additional “pad” (higher order 

sample number) that is required in order to ensure, at a 90% confidence, that the true but unknown 

𝜖ℎ90 is less than or equal to the computed least-upper-bound. 
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Figure 4.1-1: Example of the successful Validation of Horizontal Accuracy based on 100 i.i.d. samples of 

horizontal radial error; solid magenta line the value of 𝑙𝑢𝑏_𝜖ℎ90, dotted red line the value of the best 

estimate of 𝜖ℎ90 

Note that validation was successful for this particular example, as 𝑙𝑢𝑏_𝜖ℎ90 = 4.9 meters is less than the 

specified 𝐶𝐸90𝑠𝑝𝑒𝑐 = 5.5 meters.  That is, we are at least 90% confident that the true and unknown 

value of the 90th percentile 𝜖ℎ90 is less than the computed value 𝑙𝑢𝑏_𝜖ℎ90 which is less than the 

specified requirement.  The best estimate of the 90th percentile 𝜖ℎ90 was also computed for ancillary 

information, is independent of confidence-level, and is equal to 4.4 meters in this example.  And, of 

course, being an estimate, the best estimate is not actually equal to the true value of the 90th percentile 

𝜖ℎ90.  That is why 𝑙𝑢𝑏_𝜖ℎ90 is used for validation instead – it has a “built-in” measure of confidence in its 

value relative to the true but unknown value 𝜖ℎ90.  And as proven in Section 5.3 of TGD2b, this 

computed confidence is theoretically rigorous – rather remarkable given that there is no assumption 

regarding the probability distribution of the underlying errors. 

As a reminder, 90% is the default value for the percentile-level of interest for horizontal radial error, and  

90% is the default value for the confidence-level of interest for computation of the corresponding least-

upper-bound.  However, as detailed in Section 5.1, both the percentile and the confidence-level can be 

specified independently from the values 50%, 90%, and 95%, if so desired. This is illustrated in Table 4.1-

1 applicable to the 100 horizontal radial error samples of Figure 4.1-1 above.  The sensitivity of table 

entries to both the specified percentile level and the specified confidence-level also provides general 

insight into the properties of order statistics. 
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Table 4.1-1: The best estimate (best est) and the least-upper-bound (lub) of the 𝑋𝑋 percentile of 

horizontal radial error based on 100 i.i.d. samples (Figure 4.1-1) and the use of order statistics 

 

The best estimate of the 𝑋𝑋 percentile of horizontal radial error 𝜖ℎ𝑋𝑋 is a function of the specified 

percentile but independent of the specified confidence-level.  On the other hand, the least-upper-bound 

is a function of both.  In general, for a given percentile 𝑋𝑋 and a given number of i.i.d. samples, the 

higher the confidence-level 𝑌𝑌 specified for the least-upper-bound, the larger the corresponding order 

sample number and larger the corresponding value.  As can be seen from the above table, for the 

default percentile value 90% and for the default least-upper-bound confidence-level value 90%, order 

sample numbers 90 and 95, with corresponding values of 4.4 and 4.9 meters, are applicable for the best 

estimate and the least-upper-bound of the (true) horizontal radial error percentile 𝜖ℎ90, respectively. 

As discussed in Section 4.1.3 of this document, pseudo-code is supplied that performs the entire 

accuracy validation process, including the appropriate computations for the best estimate and the least-

upper-bound of the horizontal radial error percentile 𝜖ℎ𝑋𝑋 based on order statistics that were featured 

in the above example.  (For those interested in underling computational details, see TGD 2b, Sections 

5.3 and 5.4.) 

The above example also assumed the use of 100 i.i.d. error samples.  The recommended number of 

error samples for the validation of specified accuracy requirements is discussed in the next section, 

Section 4.1.1.  But first, an issue associated with the possible use of root-mean-square error (rmse) 

instead of scalar accuracy metrics (e.g. 𝐶𝐸𝑋𝑋𝑠𝑝𝑒𝑐) for the specification of accuracy is addressed: 

Root-mean-square error (rmse) is neither specified nor validated; it can be converted when necessary 

As described earlier, it is recommended that a horizontal geolocation accuracy requirement be specified 

in terms of the scalar accuracy metric 𝐶𝐸𝑋𝑋𝑠𝑝𝑒𝑐.  For NSG applications, it is essential that a geolocation 

accuracy requirement corresponds to a specifiable probability level 𝑋𝑋, which this specification does.  

The verification of this accuracy requirement is also performed using order statistics, which have the 

desirable feature that a specific probability distribution for the underling errors is neither required nor 

used.  In summary, the above recommended approach takes into account the probability of error but 

does not require a specific probability distribution. 

Sometimes an NSG geolocation system will make use of (integrate) a sensor whose performance is 

specified by its manufacturer/operator in terms of root-mean-square error (rmse), not in terms of the 

preferred scalar accuracy metric 𝐶𝐸𝑋𝑋.  Rmse is a statistical parameter that has the desirable 

characteristic of independence from a specific probability distribution, but the unfortunate 

characteristic of not being associated with a specific level of probability.   

percentile (%):

50 90 95 50 90 95

50 50 / 51 50 / 57 50 / 59 2.5 / 2.55 2.5 / 2.7 2.5 /  2.8

90 90 / 91 90 / 95 90 / 96 4.4 / 4.45 4.4 / 4.9 4.4 / 5.0

95 95 / 96 95 / 99 95 / 100 4.9 / 5.0 4.9 / 5.4 4.9 / 7.7

confidence level (%): confidence level (%):

best est / lub   order sample # best est / lub   value (m)  
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Rmse is not recommended for the specification of geolocation accuracy in the NSG nor is the 

computation of its sample-statistic recommended for the validation of accuracy.  Various reasons are 

discussed in Section I.1 of Appendix I.  However, the “bottom line” is this:  For most NSG applications, it 

is essential to know that it is 90% probable that the horizontal (radial) error of an extraction is less than 

a specified value 𝐶𝐸90𝑠𝑝𝑒𝑐, not that its expected (average) magnitude is less than a specified value 

𝑟𝑚𝑠𝑒𝑠𝑝𝑒𝑐.  The latter tells us virtually nothing about the likelihood of larger errors unless we are also 

willing to assume a specific probability distribution of errors, which is an approximation at best.  (Note: 

more correctly, rmse corresponds to the square-root of horizontal (radial) error’s expected magnitude-

squared – virtually the same thing as the expected magnitude in most cases.) 

Section I.1 also presents approximate conversion factors for the conversion of rmse to 𝐶𝐸𝑋𝑋 for 𝑋𝑋 

equal to 50, 90, and 95%, to be used if necessary.  If an rmse is provided, it is recommended that it be 

converted to 𝐶𝐸𝑋𝑋 and the latter subsequently used as the baseline value for 𝐶𝐸𝑋𝑋𝑠𝑝𝑒𝑐.  The 

recommended format for the NSG specification of accuracy and its validation based on order statistics 

that were presented earlier are then applicable and should be followed.   

The remainder of this document, other than Section I.1, no longer considers rmse, i.e., the 

recommended approach for the specification and validation of geolocation accuracy is as described 

earlier.   (Note: Section I.1 also converts rmse for vertical radial errors to 𝐿𝐸𝑋𝑋 and rmse for 3d radial 

errors to 𝑆𝐸𝑋𝑋, for use in the specification of vertical and 3d accuracies and their validation, 

respectively.) 

4.1.1 Recommended Number of Error Samples 

Validation of horizontal accuracy requirements is based on the computation of the least-upper-bound of 

the 𝑋𝑋 percentile of corresponding radial errors.  It is recommended that the least-upper-bound (lub) 

be computed at a 𝑌𝑌 = 90% confidence-level with at least 100 i.i.d. samples.  As few as 40 samples can 

also be used with certain restrictive caveats as explained below.  However, 40 samples is the firm 

minimum for the number of i.i.d. samples.  (These same recommendations are applicable to the 

validation of vertical and 3d accuracy requirements as well.) 

Type II validation errors correspond to the event that validation should not pass but does.  The 90% 

confidence-level for the lub ensures that there is less than a 10% probability of a Type II validation error.  

Type II validation errors are also essentially independent of the number of i.i.d. error samples. 

Type I validation errors correspond to the event that validation should pass but does not.  The 

probability of Type I validation errors is both a function of the number of samples and the geolocation 

system’s “design margin”: the difference between the required or specified accuracy 𝐶𝐸90𝑠𝑝𝑒𝑐 and the 

actual (but unknown) accuracy, or more specifically, the 90th percentile of horizontal radial error 𝜖ℎ90.  

The larger a positive design margin (𝐶𝐸90𝑠𝑝𝑒𝑐 − 𝜖ℎ90 > 0) and the larger the number of samples used 

in validation, the lower the probability of a Type I validation error.  An “intermediate” quantity, termed a 

“validation pad”, is related and defined as the difference between the lub and 𝜖ℎ90.   
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The validation pad provides insight into the overall issue of Type I validation errors and is discussed in 

detail below.  This discussion is then followed by details of Type I and Type II validation errors as a 

function of design margin and parameterized by the number of samples.  The discussion includes easy-

to-read plots of the probability of Type I validation errors versus design margin and the probability of 

Type II validation errors versus design margin. 

Finally, formal validation of accuracy is possible with fewer than 100 i.i.d. error samples, but is more 

difficult unless there is a large design margin.  As few as 40 i.i.d. samples can be used with the 

understanding that the probability of a Type I validation error will be significantly larger for most 

reasonable design margins.   (See Section 4.1.2 for discussion of exceptions related to low accuracy 

systems.)   And it must be emphasized that these are to be i.i.d. samples, not correlated samples – see 

both Section 5.2.6 of TGD 2b and Section 5.6 of this document for relevant discussions regarding i.i.d. 

error samples.  The above recommendations corresponding to the number of samples are also 

applicable to all radial error percentiles, i.e., 𝑋𝑋 = 50, 90, and 95%. 

Validation pad 

The following provides insight into why at least 100 i.i.d. samples are recommended for validation.  As 

was indicated in Figure 4.1-1 and Table 4.1-1 corresponding to the previous example, the least-upper-

bound  𝑙𝑢𝑏_𝜖ℎ90 at a 𝑌𝑌 = 90% confidence-level is larger than the best estimate of 𝜖ℎ90, where 𝜖ℎ90 

corresponds to the true (unknown) value of the 𝑋𝑋 = 90th percentile of horizontal radial error (aka true 

𝐶𝐸_90).  Furthermore, 𝑙𝑢𝑏_𝜖ℎ90 is larger than 𝜖ℎ90 itself with a confidence of 𝑌𝑌 = 90%  by definition.   

The difference between 𝑙𝑢𝑏_𝜖ℎ90 and 𝜖ℎ90 constitutes a 𝑌𝑌 = 90% confidence-level or “validation 

pad”.  This pad is defined as 𝑝𝑎𝑑 ≡ (𝑙𝑢𝑏_𝜖ℎ90 − 𝜖ℎ90), and is positive-valued 𝑌𝑌 = 90% of the time.  If 

the pad becomes too big, it is less likely that the specified requirement 𝐶𝐸90𝑠𝑝𝑒𝑐 will be validated, i.e., 

less likely that 𝑙𝑢𝑏_𝜖ℎ90 ≤ 𝐶𝐸90𝑠𝑝𝑒𝑐.  This pad is a function of the number of samples used to compute 

the least-upper-bound – the smaller the number of samples the larger the pad.  Related quantities are 

illustrated conceptually in Figure 4.1.1-1 below. 
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Figure 4.1.1-1:  Conceptual illustration of a 90% confidence-level or validation pad 

 

𝑟𝑒𝑙_𝑝𝑎𝑑 is defined as the value of the pad relative to the true value of 𝜖ℎ90 (meters), i.e., 𝑟𝑒𝑙_𝑝𝑎𝑑 ≡

𝑝𝑎𝑑/𝜖ℎ90 = (𝑙𝑢𝑏_𝜖ℎ90 − 𝜖ℎ90)/𝜖ℎ90.  The blue curve in the following Figure 4.1.1-2 presents the 

expected (average) value of 𝑟𝑒𝑙_𝑝𝑎𝑑 in percent as a function of the number of samples used.   

 

 
Figure 4.1.1-2: Expected value (blue) and 𝑍𝑍 = 90th percentile (red) of the  

validation pad relative to the true value 𝜖ℎ90 (or rel_pad) in percent 
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In particular, if only 25 i.i.d. samples are available, the value of 𝑟𝑒𝑙_𝑝𝑎𝑑 is expected to be approximately 

28%.  If 100 i.i.d. samples are available instead, the value of 𝑟𝑒𝑙_𝑝𝑎𝑑 is expected to be only 13% instead.  

And as seen in Figure 4.1.1-2, there is also a substantial “knee in the curve” at around 40 to 100 i.i.d. 

error samples.  The value of 𝑟𝑒𝑙_𝑝𝑎𝑑 changes most dramatically as a function of the number of samples 

during this range of samples.  Thus, for example, adding 50 more i.i.d. samples to 40 i.i.d. samples has a 

much more dramatic effect on 𝑟𝑒𝑙_𝑝𝑎𝑑 than adding 50 more i.i.d. samples to 150 i.i.d. samples. 

As stated above, the blue curve in Figure 4.1.1-2 corresponds to the expected or average value of 

𝑟𝑒𝑙_𝑝𝑎𝑑 in percent.  It illustrates the effect of the number of i.i.d. samples on the value or “length” of 

the (relative) validation pad.  However, a 𝑍𝑍 = 90th percentile value of 𝑟𝑒𝑙_𝑝𝑎𝑑 is a more realistic (and 

larger) value as demonstrated in the next paragraph, and is termed 𝑚𝑎𝑥_𝑟𝑒𝑙_𝑝𝑎𝑑 for convenience.  It 

corresponds to the red curve in the above figure with results summarized as follows as a function of the 

number of i.i.d. error samples 𝑛𝑠𝑎𝑚𝑝: 

 𝑚𝑎𝑥 _𝑟𝑒𝑙_𝑝𝑎𝑑 = 10%   if 𝑛𝑠𝑎𝑚𝑝 = 400                         (4.1.1-1) 

 𝑚𝑎𝑥 _𝑟𝑒𝑙_𝑝𝑎𝑑 = 14%   if 𝑛𝑠𝑎𝑚𝑝 = 200  

 𝑚𝑎𝑥 _𝑟𝑒𝑙_𝑝𝑎𝑑 = 23%   if 𝑛𝑠𝑎𝑚𝑝 = 100  

 𝑚𝑎𝑥 _𝑟𝑒𝑙_𝑝𝑎𝑑 = 33%   if 𝑛𝑠𝑎𝑚𝑝 = 55  

 𝑚𝑎𝑥 _𝑟𝑒𝑙_𝑝𝑎𝑑 = 39%   if 𝑛𝑠𝑎𝑚𝑝 = 40  

 𝑚𝑎𝑥 _𝑟𝑒𝑙_𝑝𝑎𝑑 = 56%   if 𝑛𝑠𝑎𝑚𝑝 = 25  

If 𝐶𝐸90𝑠𝑝𝑒𝑐 = (1 + 𝑚𝑎𝑥 _𝑟𝑒𝑙_𝑝𝑎𝑑) × 𝜖ℎ90 there is an approximate 𝑍𝑍 = 90% probability that 

validation correctly passes.  Of course, the value of 𝑚𝑎𝑥_𝑟𝑒𝑙_𝑝𝑎𝑑 depends on the number of i.i.d. error 

samples; if 100 samples, 𝑚𝑎𝑥 _𝑟𝑒𝑙_𝑝𝑎𝑑 = 0.23, and 𝐶𝐸90𝑠𝑝𝑒𝑐 would have to equal 1.23 × 𝜖ℎ90 in order 

for validation to correctly pass with a probability of 90%.  And assuming the same number of i.i.d. error 

samples, if 𝐶𝐸90𝑠𝑝𝑒𝑐 is even larger, the probability that validation correctly passes is larger as well.   

Also, if 𝐶𝐸90𝑠𝑝𝑒𝑐 = (1 + 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑_𝑣𝑎𝑙𝑢𝑒_𝑟𝑒𝑙_𝑝𝑎𝑑) × 𝜖ℎ90 instead, there would only be an 

approximate 50% probability that validation correctly passes. 

The more general situation in which 𝐶𝐸90𝑠𝑝𝑒𝑐 ≡ (1 + ∆) × 𝜖ℎ90 corresponds to an accuracy 

requirement based on a “design margin”, with the corresponding design margin equal to ∆.  The term 

“design margin” refers to a general design/analytic process used by an NSG geolocation system in order 

to determine the required value 𝐶𝐸90𝑠𝑝𝑒𝑐.  If ∆= 𝑚𝑎𝑥_𝑟𝑒𝑙_𝑝𝑎𝑑, there is a 90% probability that 

validation correctly passes by definition.   

The term “estimated design margin” is used for ∆ when the value for 𝜖ℎ90 in the defining equation 

𝐶𝐸90𝑠𝑝𝑒𝑐 ≡ (1 + ∆) × 𝜖ℎ90 is an a priori estimate from the design process as well, as opposed to its 

true value.  The general concept and utility of a design margin and an estimated design margin are 

addressed under the next sub-heading and in the following subsection, respectively. 

Appendix H describes the generation of Figure 4.1.1-2 as well as the results of Equation (4.1.1-1) based 

on a Monte-Carlo simulation [TGD2e] implemented via (included) pseudo-code.  Simulation results are 
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also somewhat sensitive to the ratio of the eigenvalues of the corresponding a priori (assumed) 2 × 2 

covariance matrix of horizontal errors; however, the values of Equation (4.1.1-1) are reasonably 

representative as discussed in the appendix.   

Type I and Type II Errors in accuracy validation 

Type I validation errors are defined as the event that validation of accuracy should pass but does not: 

𝜖ℎ90 ≤ 𝐶𝐸90𝑠𝑝𝑒𝑐 but 𝑙𝑢𝑏_𝜖ℎ90 > 𝐶𝐸90𝑠𝑝𝑒𝑐.   

Type II validation errors are defined as the event that validation of accuracy should not pass but does: 

𝜖ℎ90 > 𝐶𝐸90𝑠𝑝𝑒𝑐 but 𝑙𝑢𝑏_𝜖ℎ90 ≤ 𝐶𝐸90𝑠𝑝𝑒𝑐. 

Figure 4.1.1-3 presents the probability of passing validation as a function of the design margin ∆, where 

𝐶𝐸90𝑠𝑝𝑒𝑐 = (1 + ∆) × 𝜖ℎ90.  Results are further parameterized by the number of i.i.d. samples (25, 40, 

55, 100, 200).   

 

Figure 4.1.1-3: Probability of passing validation as a function of the design margin ∆ in percent; 

parameterized by the number of i.i.d. error samples  

The value ∆= 0.23 in the above figure equals 𝑚𝑎𝑥 _𝑟𝑒𝑙_𝑝𝑎𝑑 corresponding to 100 samples.   

Figure 4.1.1-4 corresponds to the probability of Type I validation errors, and Figure 4.1.1-5 corresponds 

to the probability of Type II validation errors.  Type I validation errors only occur when ∆ is positive, and 

Type II validation errors only occur when ∆ is negative.  The results of Figures 4.1.1-3 through 4.1.1-5 are  

based on Monte Carlo simulation, with corresponding pseudo-code presented in Appendix H. 
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Figure 4.1.1-4: Probability of Type I validation errors as a function of the design margin ∆ in percent; 

parameterized by the number of i.i.d. error samples 

 

Figure 4.1.1-5: Probability of Type II validation errors as a function of the design margin ∆ in percent; 

parameterized by the number of i.i.d. error samples 
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Type I validation errors are minimized through the use of more i.i.d. samples, which implies a smaller 

validation pad per Equation (4.1.1-1).  That is, 𝑙𝑢𝑏_𝜖ℎ90 is closer to the true 𝜖ℎ90 and hence it is more 

likely to correctly pass validation.  This is why at least a 100 i.i.d. samples are recommended for 

validation. 

The minimization of Type II validation errors is a “given” via the use of an lub with a corresponding 

reasonably large confidence-level.  This is why a 𝑌𝑌 = 90% confidence-level is recommended for 

validation.  And as seen by comparing Figures 4.1.1-4 and 4.1.1-5, the recommended approach to 

validation emphasizes the minimization of Type II validation errors over the minimization of Type I 

validation errors.  That is, if a validation error does occur, it is far more preferable that it correspond to 

validation failing when it should have passed (Type I error) than it correspond to validation passing when 

it should have failed (Type II error). 

In addition to the use of more i.i.d. samples, Type I validation errors are also minimized via the amount 

of  (positive) design margin ∆, if any, built into the geolocation system, as discussed further in the next 

subsection. 

4.1.2 The Bigger Picture for Specification 

Due to the above “validation pad” in conjunction with a normal system design margin, the prudent 

practice is that a viable NSG geolocation system accuracy specification will have at least a ∆= 25% 

overall and built-in estimated design margin relative to validation of the actual system’s operational 

performance, i.e., 𝐶𝐸90𝑠𝑝𝑒𝑐 ≥ (1 + 0.25)𝜖ℎ90, where the value used for 𝜖ℎ90 is an a priori estimate.  Of 

course, there is an interrelationship between the top-level specified accuracy requirement(s), the 

(prime) contractor’s system (and subsystem) design requirements which flow down from the specified 

requirements, and the validation of the actual system’s performance.   

For example, suppose that an NSG geolocation system to be based on commercial satellite imagery has 

a true but hypothetical NSG mission requirement of 𝐶𝐸90𝑚𝑖𝑠𝑠𝑖𝑜𝑛 = 5 meters with required 

performance set equal, i.e., 𝐶𝐸90𝑠𝑝𝑒𝑐 = 5 meters.  It is assumed that the contractor/integrator will 

design to a performance level of 4 meters or better, i.e., 5 = (1 + 0.25) × 4 meters.  This, of course, is 

not a requirement on the contractor/integrator per se – just good sense.  On the other hand, it is 

recommended that the NSG only levy the 5 meter requirement if it feels that at least 4 meters is 

achievable with current technology and also consistent with the amount of funding allocated to the 

contractor/integrator in order to build the system or enhance/integrate a current system.  In addition, 

the contractor/integrator’s 4 meter allocated design requirement should be consistent with its 

estimates of the effects of validation, preferably based on a good estimate of the number of i.i.d. error 

samples to be available to validation.  It is recommended that a minimum value for the number of i.i.d. 

error samples available to validation be included in the actual system accuracy requirement statement 

to which the contractor/integrator bids and designs. 

The above relies on an adequate and built-in estimated design margin in order to successfully 

accommodate the effects or “length” of the corresponding validation pad in the validation of 𝐶𝐸90𝑠𝑝𝑒𝑐.  

An alternate, but non-preferred method is to directly add the validation pad to 𝐶𝐸90𝑠𝑝𝑒𝑐.  For example, 
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based on an assumed number of i.i.d. samples available to validation equal to 55, 𝑚𝑎𝑥_𝑟𝑒𝑙_𝑝𝑎𝑑 equals 

approximately 33% (see Equation (4.1.1-1)).  This value is relative to the true value of 𝜖ℎ90 which is 

further assumed to equal 𝐶𝐸90𝑠𝑝𝑒𝑐 for this alternate method, i.e., corresponds to an estimated design 

margin equal to zero (∆= 0).  Therefore, an adjusted specification, to be used for validation only, is as 

follows: 𝑎𝑑𝑗_𝐶𝐸90𝑠𝑝𝑒𝑐 = (1 + 0.33) × 𝐶𝐸90𝑠𝑝𝑒𝑐 = 1.33 × 𝐶𝐸90𝑠𝑝𝑒𝑐, where the value for the 

estimated design margin is now equal to ∆= 33%.  The problem with this method is that the original 

value of zero for the estimated design margin was simply an assumption, not necessarily a reasonable 

estimate, and a negative value may actually be applicable instead, i.e., 𝐶𝐸90𝑠𝑝𝑒𝑐 may actually be less 

than the true value of 𝜖ℎ90.  Consequently, there is a higher probability of a Type II validation error 

relative to the original specification when using the adjusted specification during validation.   

An exception regarding the number of samples for low-accuracy products 

In this document, the specification and validation of accuracy is primarily aimed at a geolocation system 

and its inherent geolocation capabilities.  In some cases, such a system may also (or only) generate 

products that are based on its inherent geolocation capabilities but the products have their own and 

significantly less stringent accuracy requirements.  For example, an NSG geolocation system may acquire 

and use registered (controlled) monoscopic near-nadir images generated by a particular commercial 

satellite imaging system that has an estimated geolocation accuracy of 𝐶𝐸𝑒𝑠𝑡
𝑠𝑒𝑛𝑠𝑜𝑟 = 10 meters for 

corresponding horizontal extraction accuracy.  The NSG geolocation system generates 1:50,000 maps 

based on these images.  The map has a specified horizontal accuracy requirement of only approximately 

𝐶𝐸𝑠𝑝𝑒𝑐
𝑚𝑎𝑝

= 50 meters.  (Vertical accuracy is ignored in this example for simplicity.)    

There are many independent errors that affect the geolocation accuracy of the end-product or map, 

such as: (1) the (image) mensuration error associated with the classification, identification, and 

extraction of an appropriate feature of interest for the map, (2) the error associated with the 

interpolation of geolocations between extracted and adjacent feature nodes, (3) the error associated 

with the map’s scale and resolution, and (4) the inherent geolocation error associated with the 

geolocation system itself – that is, the error in the extraction of an arbitrary horizontal geolocation 

assuming only one-pixel mensuration error and none of the other identified map-specific errors.  

In terms of the total map generation error budget of 𝐶𝐸𝑠𝑝𝑒𝑐
𝑚𝑎𝑝

= 50 meters, inherent geolocation error 

(accuracy) is allocated by the NSG geolocation system in this example to a value of 𝐶𝐸𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑
𝑠𝑒𝑛𝑠𝑜𝑟 = 25 

meters.  The combined effects of the other errors are allocated 𝐶𝐸𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑
𝑜𝑡ℎ𝑒𝑟 = 43, such that the root-

sum-square of 𝐶𝐸𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑
𝑠𝑒𝑛𝑠𝑜𝑟    and  𝐶𝐸𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑

𝑜𝑡ℎ𝑒𝑟   equals 𝐶𝐸𝑠𝑝𝑒𝑐
𝑚𝑎𝑝

= 50 meters.  The value 𝐶𝐸𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑
𝑠𝑒𝑛𝑠𝑜𝑟 = 25  

meters corresponds to inherent geolocation accuracy and is to be validated.   

(Validation of the overall accuracy of the map may also be applicable, but this is a different process, 

involves comparing various locations read from the map itself to corresponding “ground truth” 

locations, and is not addressed explicitly in this document.)   

Setting the a priori estimate of 𝜖ℎ_𝑠𝑒𝑛𝑠𝑜𝑟90 to  𝐶𝐸𝑒𝑠𝑡
𝑠𝑒𝑛𝑠𝑜𝑟, and setting 𝐶𝐸𝑠𝑝𝑒𝑐

𝑠𝑒𝑛𝑠𝑜𝑟 = 𝐶𝐸𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑
𝑠𝑒𝑛𝑠𝑜𝑟 , it follows 

that 𝐶𝐸𝑠𝑝𝑒𝑐
𝑠𝑒𝑛𝑠𝑜𝑟 = (1 + ∆)𝐶𝐸𝑒𝑠𝑡

𝑠𝑒𝑛𝑠𝑜𝑟, or 𝐶𝐸𝑠𝑝𝑒𝑐
𝑠𝑒𝑛𝑠𝑜𝑟 = (1 + 1.5)10 = 25 meters with a corresponding 150% 
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estimated design margin.  Based on earlier analysis (Equation (4.1.1-1)), there is a 56% validation pad 

(𝑚𝑎𝑥_𝑟𝑒𝑙_𝑝𝑎𝑑) required relative to the true value 𝜖ℎ_𝑠𝑒𝑛𝑠𝑜𝑟90 using 25 i.i.d. error samples.  There is 

also a corresponding 90% probability of correctly passing validation using a design margin equal to this 

validation pad, which is significantly less than the 150% estimated design margin that is available.  

Consequently, as few as 25 samples can be used for the formal validation of 𝐶𝐸𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑
𝑠𝑒𝑛𝑠𝑜𝑟  if such samples 

are difficult to obtain.  However, regardless the value of the estimated design margin, it is 

recommended that no fewer than 25 i.i.d. samples ever be used for formal validation. 

For this particular example, and following the validation process for the specified requirement of 

𝐶𝐸𝑠𝑝𝑒𝑐
𝑠𝑒𝑛𝑠𝑜𝑟 = 25 meters using 25 i.i.d. samples, it is expected that validation will pass easily with a value 

of 𝑙𝑢𝑏_𝜖ℎ90 on the order of 13 meters (less than 16 meters at 90% probability), and a value of the best 

estimate of 𝜖ℎ90, computed for ancillary information only, on the order of 10 meters.   The values 10, 

13, and 16 meters corresponds to 𝐶𝐸𝑒𝑠𝑡
𝑠𝑒𝑛𝑠𝑜𝑟 = 10 meters, (1 + exp_𝑣𝑎𝑙𝑢𝑒_𝑟𝑒𝑙_𝑝𝑎𝑑) × 𝐶𝐸𝑒𝑠𝑡

𝑠𝑒𝑛𝑠𝑜𝑟 =

 1.28 × 𝐶𝐸𝑒𝑠𝑡
𝑠𝑒𝑛𝑠𝑜𝑟 ≅ 13 meters, and (1 + 𝑚𝑎𝑥_𝑟𝑒𝑙_𝑝𝑎𝑑) × 𝐶𝐸𝑒𝑠𝑡

𝑠𝑒𝑛𝑠𝑜𝑟 =  1.56 × 𝐶𝐸𝑒𝑠𝑡
𝑠𝑒𝑛𝑠𝑜𝑟 ≅ 16 meters, 

respectively. 

4.1.3 Pseudo-code for the Validation of Accuracy Requirements 

Appendix B contains pseudo-code (MATLAB) that performs the entire accuracy validation process given 

the appropriate inputs per accompanying documentation and in compliance with the above Section 4.1 

overview and the corresponding details presented in Section 5.1.  Pseudo-code output includes plots 

similar to Figure 4.1-1 presented earlier.   Appendix B also contains examples of the pseudo-code’s 

explicit use. 

4.2 Overview of Specification & Validation of Predicted Accuracy 

Requirements 
The specification and validation of predicted accuracy is more complicated than the specification and 

validation of accuracy.  It necessarily involves various probability levels, and both the use of geolocation 

(error) samples as well as their corresponding predicted error covariance matrices.  The latter are used 

to normalize radial error samples at different levels of probability.  Corresponding and appropriate 

normalization results validate that the covariance matrices are reliable, which in turn, ensure reliable 

predicted accuracies for the geolocations – reliable predicted scalar accuracy metrics can be computed 

from the error covariance matrix and geolocations can be optimally fused with other geospatial 

“products” using the (full) error covariance matrix directly [TGD1]. 

Validation of predicted accuracy implies validation of error models 

As discussed briefly in Sections 4 and 5.1, a predicted error covariance matrix corresponds to the 

geolocation extraction process for a particular target or geospatial object, and is typically computed 

simultaneously with a best estimate of the geolocation.  For the validation process, this covariance 

matrix also corresponds to a particular geolocation error: extracted geolocation differenced from 

corresponding ground truth location.  The validation process is to ensure that this covariance matrix 

(predicted accuracy) is reliable, i.e., statistically reflects actual geolocation errors.  In order for the 

covariance matrix to be reliable and validation of predicted accuracy to pass, the extraction process 
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must have performed rigorous error propagation and implemented reliable (predictive) statistical error 

models for all significant errors affecting the extracted geolocation, such as sensor metadata (sensor 

position, etc.) errors.  (See TGD 1, Sections 5.2 and 5.8 for details regarding statistical error models and 

rigorous error propagation.) 

Specification and validation of predicted accuracy require an assumed probability distribution  

The specification and validation of predicted accuracy necessarily assume a specific form for the 

probability distribution of the underlying error components – an approximate mean-zero, multi-variate 

Gaussian distribution was selected. Thus, order statistics, which makes no assumption regarding 

probability distribution, and its (probabilistic) least-upper-bound are not applicable and not used.   

More specifically, and regarding the assumed probability distribution for horizontal errors, 𝜖𝑋 =

[𝜖𝑥 𝜖𝑦]𝑇 is assumed to have a mean-zero, multi-variate Gaussian (Normal) probability distribution, but 

with an arbitrary (valid) 2𝑥2 predicted covariance matrix.  The covariance matrix can have non-identical 

diagonal elements and have off-diagonal elements as well.  (Correspondingly, the scalar random variable 

horizontal radial error 𝜖ℎ = √𝜖𝑥2 + 𝜖𝑦2 has a distribution more general than either a Rayleigh or a Rice 

distribution.)   

As discussed in Sections 5.2 and 5.4, validation also accounts for the fact that 𝜖𝑋 is only approximately 

mean-zero, multi-variate Gaussian distributed and is reasonably robust to this approximation.  However, 

a multi-variate Gaussian probability distribution is still an assumption, and future research regarding the 

effects of this assumption as well as possible modifications given additional a priori information about 

the distribution is recommended.  This is discussed in Section 5.4.4.   

Now that the above background has been supplied, specification of predicted accuracy requirements is 

directly addressed followed by details of their validation.  In particular, the specification of predicted 

horizontal accuracy is as follows (again, any combination of predicted vertical, horizontal, and 3d  

accuracy can actually be specified as detailed in Section 5.2): 

Specification of predicted horizontal accuracy requirements 

Normalized horizontal error shall satisfy the following:                                                       

 𝑝𝑟𝑜𝑏{𝜖ℎ_𝑛𝑜𝑟𝑚99 ≤ 1} ≥ 0. 𝑌𝑌ℎ_99_𝑠𝑝𝑒𝑐      and      (4.2-1) 

 𝑝𝑟𝑜𝑏{𝜖ℎ_𝑛𝑜𝑟𝑚90 ≤ 1} ≥ 0. 𝑌𝑌ℎ_90_𝑠𝑝𝑒𝑐      and 

 𝑝𝑟𝑜𝑏{𝜖ℎ_𝑛𝑜𝑟𝑚50 > 1} ≥ 0. 𝑌𝑌ℎ_50_𝑠𝑝𝑒𝑐 , where 

 

o Normalized horizontal error tolerance requirements at the 99, 90, and 50% probability 

levels are specified as the three values {𝑌𝑌ℎ_99_𝑠𝑝𝑒𝑐 , 𝑌𝑌ℎ_90_𝑠𝑝𝑒𝑐 , 𝑌𝑌ℎ_50_𝑠𝑝𝑒𝑐}:  

 In order to provide context, typical values for a well-calibrated commercial 

satellite EO imaging system and numerous samples of error are on the order of  

{𝑌𝑌ℎ_99_𝑠𝑝𝑒𝑐 , 𝑌𝑌ℎ_90_𝑠𝑝𝑒𝑐 , 𝑌𝑌ℎ_50_𝑠𝑝𝑒𝑐 } = {97, 85, 44 %}. 
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 A more general discussion on where appropriate values are obtained is provided 

in a later paragraph.  

o 𝜖ℎ_𝑛𝑜𝑟𝑚𝑋𝑋 ≡ 𝜖ℎ/𝜖ℎ_𝑝𝑟𝑒𝑑_𝑟𝑎𝑑𝑖𝑎𝑙𝑋𝑋 

 𝜖ℎ is the horizontal radial error for an arbitrary extraction 

 𝜖ℎ_𝑝𝑟𝑒𝑑_𝑟𝑎𝑑𝑖𝑎𝑙𝑋𝑋 is the corresponding predicted radial (expected magnitude) 

of 𝜖ℎ at the probability-level 𝑋𝑋 and computed from the predicted error 

covariance matrix 

 For example, there is a 90% probability that the horizontal radial error 

𝜖ℎ is less than or equal to 𝜖ℎ_𝑝𝑟𝑒𝑑_𝑟𝑎𝑑𝑖𝑎𝑙90 

 𝜖ℎ_𝑛𝑜𝑟𝑚𝑋𝑋 is also termed normalized horizontal radial error at the 𝑋𝑋 level of 

probability 

 𝑝𝑟𝑜𝑏 in Equation (4.2-1) is probability taken over all applicable extractions 

 

The specification of predicted accuracy requirements includes a top-level description of the assumed 

operational scenario (constraints) for geolocation extraction, e.g., imaging angles for commercial 

satellite imagery – see Section 5 for more details. 

Validation of predicted horizontal accuracy requirements 

Validation of the above requirements (Equation (4.2-1)) simply consists of testing whether all of the 

specific normalized error tests (at the three different levels of probability) are successful, where 

probabilities (“𝑝𝑟𝑜𝑏”) are computed as the percentage of normalized error samples passing the 

associated normalized error test, and where normalized error samples are computed as:   

 𝜖ℎ_𝑛𝑜𝑟𝑚𝑋𝑋_𝑠_𝑘 = 𝜖ℎ𝑠_𝑘/(𝑑
𝑋𝑋

𝜖ℎ𝑠_𝑘(𝜖𝑋𝑠_𝑘
𝑇 (𝐶𝑋_𝑝𝑟𝑒𝑑

𝑠_𝑘
)−1𝜖𝑋𝑠_𝑘)

−1/2
) for an arbitrary    (4.2-2) 

horizontal error sample 𝑘, and where the numerator 𝜖ℎ𝑠_𝑘 is the (scalar) horizontal radial error 

sample, and the denominator is the corresponding predicted radial at the 𝑋𝑋 (99, 90, or 50%) 

probability-level. 

 

The denominator or predicted radial is computed as detailed above using the horizontal radial 

error sample 𝜖ℎ𝑠_𝑘 , the 2𝑥1 horizontal (not radial) error sample 𝜖𝑋𝑠_𝑘, the corresponding  2𝑥2 

predicted error covariance matrix 𝐶𝑋_𝑝𝑟𝑒𝑑𝑠_𝑘, and assumes an (approximate) multi-variate 

Gaussian probability distribution of underlying horizontal error components 𝜖𝑥 and 𝜖𝑦.  This 

computation is also termed “ellipsoidal-based” since scalar accuracy metrics (e.g. 𝐶𝐸90) are not 

used – more on this later.  (Note that 𝑑99 = 3.035, 𝑑90 = 2.146, 𝑑50 = 1.177  (unit-less) 

corresponding to a multivariate (bivariate) Gaussian distribution.) 

The horizontal radial error sample and its corresponding predicted radial at the 90% probability-level are 

represented graphically in the following figure.  The 90% error ellipse is centered at zero and it is 90% 

probable that an arbitrary horizontal error is within its boundary by definition.   
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Figure 4.2-1: Example of horizontal radial error (excessively large in this particular example for clarity) 

versus corresponding predicted radial at the 90% probability level; the 90% predicted radials 

corresponding to independent samples of horizontal error will intersect the error ellipse at different 

locations along its boundary 

 

An i.i.d. sample of horizontal radial error 𝜖ℎ𝑠_𝑘 is computed from the horizontal error sample 𝜖𝑋𝑠_𝑘 

which is statistically consistent with the corresponding true (and unknown) error covariance matrix, 

whereas the corresponding computed predicted radial is consistent with the direction of 𝜖𝑋𝑠_𝑘 and the 

corresponding predicted error covariance matrix.  When the two error covariance matrices are 

reasonably similar and a reasonable number of i.i.d. samples are available, Equation (4.2-1) will be 

satisfied with a high level of confidence as illustrated later. 

Note: An XX% (probability) error ellipse, together with its specified level of probability (XX%), is 

equivalent to the predicted error covariance matrix from which it is computed (see TGD 2a, Section 5.3 

regarding an error ellipse and its corresponding error covariance matrix). 

Where do the normalized horizontal error tolerance requirements come from? 

The specified values {𝑌𝑌ℎ_99_𝑠𝑝𝑒𝑐 , 𝑌𝑌ℎ_90_𝑠𝑝𝑒𝑐 , 𝑌𝑌ℎ_50_𝑠𝑝𝑒𝑐 } of Equation (4.2-1) are “tailored” to both an 

assumed minimum number of i.i.d. error samples available to the corresponding validation process, and 

to a required “level of fidelity” of the underlying predicted statistical error model, i.e., the fidelity of 

predicted accuracy, or more specifically, the predicted error covariance matrix.   

  

Green: 90% error ellipse;  

Black arrows: East-North coordinate system 

Blue arrow magnitude: predicted 90% radial 

Red arrow: horizontal error;  

Magnitude: horizontal radial error 
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Level of fidelity is defined in terms of “sigma deviation” or 𝑠𝑖𝑔_𝑑𝑒𝑣 as follows: 

Table 4.2-1: Predicted accuracy fidelity categories versus sigma deviation range 

 

Sigma deviation range is a convenient and approximate method to express the summed effects of 

various differences between a predicted error covariance matrix and the corresponding true (but 

unknown) error covariance matrix.  Specifically, the 2𝑥2 predicted error covariance matrix (𝐶𝑋_𝑝𝑟𝑒𝑑) is 

assumed to satisfy the following relationship with the 2𝑥2 true error covariance matrix (𝐶𝑋_𝑡𝑟𝑢𝑒 ): 

(1 + 𝑠𝑖𝑔_𝑑𝑒𝑣𝑙)
2𝐶𝑋_𝑡𝑟𝑢𝑒 ≤ 𝐶𝑋_𝑝𝑟𝑒𝑑 ≤ (1 + 𝑠𝑖𝑔_𝑑𝑒𝑣𝑟)

2𝐶𝑋_𝑡𝑟𝑢𝑒,           (4.2-3)  

where 𝑠𝑖𝑔_𝑑𝑒𝑣𝑙 and 𝑠𝑖𝑔_𝑑𝑒𝑣𝑟 correspond to the left and right end points, respectively, of the sigma 
deviation range (interval) for the desired category of predicted accuracy fidelity per Table 4.2-1.  The 
scalar multiplier (e.g. (1 + 𝑠𝑖𝑔_𝑑𝑒𝑣𝑙)

2) multiplies each component of 𝐶𝑋_𝑡𝑟𝑢𝑒 to yield a corresponding 
scaled true error covariance matrix. 

The inequalities between covariance matrices in Equation (4.2-3) are important and useful relationships.  
In general, two covariance matrices satisfy 𝐴 ≤ 𝐵 if (𝐵 − 𝐴) ≥ 0, i.e., the matrix (𝐵 − 𝐴) is a positive 
semi-definite matrix.  This is further described and detailed in Section 5.3.5 of TGD2a (predictive 
statistics), including the relationship between corresponding probability ellipses. 

The above is illustrated graphically in Figure 4.2-2 below corresponding to medium predicted accuracy 
fidelity, where the probability ellipses represent and are equivalent to corresponding error covariance 
matrices.  More specifically, medium predicted accuracy fidelity corresponds to (1 − 0.15)2𝐶𝑋_𝑡𝑟𝑢𝑒 ≤
𝐶𝑋_𝑝𝑟𝑒𝑑 ≤ (1 + 0.20)2𝐶𝑋_𝑡𝑟𝑢𝑒, per Equation (4.2-3) and Table 4.2-1.  For convenience, this 
relationship is also stated as “predicted error covariance matrices are somewhere within (1 − 0.15)2 to 
(1 + 0.20)2 times the corresponding true error covariance matrices”. 

 

high medium low

-5 to +5 -15 to +20 -30 to +40

pred acc fidelity category

"sigma deviation" (%) per
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Figure 4.2-2: The predicted error covariance matrix 𝐶𝑋_𝑝𝑟𝑒𝑑 (red ellipse) is bounded by scaled versions 
of the the true error covariance matrix 𝐶𝑋_𝑡𝑟𝑢𝑒 (blue ellipses) consistent with Equation (4.2.3) 

In the above figure, the probability  ellipses can be assumed to be at the 90% probability-level.  
However, as the figure presents a relative comparison, any probability-level is applicable as long as it is 
common to all of the ellipses.  In general, a probability ellipse scales with probability-level. 

The degree of maturity, level of system calibration, and the variability of the operational range of an 

NSG system affects the specified level of fidelity which is implicit in the specified values 

{𝑌𝑌ℎ_99_𝑠𝑝𝑒𝑐, 𝑌𝑌ℎ_90_𝑠𝑝𝑒𝑐 , 𝑌𝑌ℎ_50_𝑠𝑝𝑒𝑐 } for flexibility.  Recommended values are discussed in Section 

5.4.2, with the following table representative: 

Table 4.2-2:  Normalized horizontal error tolerance values (%) vs. number of i.i.d. samples and predicted 

accuracy fidelity 

 

 

Hor error: 

True ellipse: 

True radial: 

+20% true ellipse: 

-15% true ellipse: 

+20/-15% true radials: 

Pred ellipse: 

Pred radial: 

normalized test level 400 samples 100 samples 50  samples  25  samples pred acc fidelity

99 97 95 93 90

90 85 83 78 76 high

50 44 39 38 34

99 95 90 88 84

90 78 76 72 68 medium

50 36 30 30 24

99 85 84 82 76

90 65 64 60 54 low

50 25 24 18 14
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The fewer the number of available samples and/or the lower the required predicted accuracy fidelity 

(NSG system specific), the lower (easier to pass) the normalized error test tolerances.   

High predicted accuracy fidelity example 

As an example, consider specifying predicted accuracy requirements for an NSG geolocation system 

based on same-pass stereo commercial satellite imagery.  The system is intended for a high-value 

mission and utilizes data collected by a specific sensor platform with a proven CONOPs; therefore, high 

predicted accuracy fidelity is both desired and reasonable. The investment to obtain 100 i.i.d. error 

samples (minimum) for the validation of predicted accuracy is deemed reasonable as well.  Hence, the 

values of the normalized error tolerances selected from Table 4.2-2 would nominally be {𝑌𝑌ℎ_99_𝑠𝑝𝑒𝑐 =

95 , 𝑌𝑌ℎ_90_𝑠𝑝𝑒𝑐 = 83 , 𝑌𝑌ℎ_50_𝑠𝑝𝑒𝑐 = 39 }, and their explcit values included in Equation (4.2-1) as part of 

the specification of predicted horizontal accuracy requirements. 

High predicted accuracy fidelity corresponds to a sigma deviation range of -5% to +5% per Table 4.2-1.  

Correspondingly, and as detailed in Section 4.2.1 (Figure 4.2.1-1), if predicted error covariance matrices 

are somewhere within (1 − 0.05)2 to (1 + 0.05)2 times the corresponding true error covariance 

matrices, there is greater than a 90% probability that validation will pass as desired.  On the other hand, 

if predicted error covariance matrices are less than approximately (1 − 0.20)2 or greater than 

approximately (1 + 0.25)2 times the corresponding true error covariance matrices, there is less than a 

5% probability that validation will pass.   

Low predicted accuracy fidelity example 

As another and more extensive example that is at the “other end of the spectrum”, consider specifying 

predicted accuracy requirements for an NSG geolocation system that is based on a tactical airborne 

sensor of specific sensor modality.  Assume further that the underlying error models used in the 

extraction of a corresponding geolocation and its predicted error covariance matrix are relatively 

immature due to a combination of various factors, such as: (1) the complexity of errors affecting the 

geolocation results, (2) poor fidelity of sensor metadata predicted accuracies, (3) a wide-range for the 

constraints of sensor-to-geolocation geometries, and (4) a relatively non-mature CONOPS for the 

sensor/platform.  Thus, low predicted accuracy fidelity is deemed applicable.  Also, 100 samples are 

assumed available for subsequent validation processing.  Hence, the values of the normalized error 

tolerances selected from Table 4.2-2 would nominally be {𝑌𝑌ℎ_99_𝑠𝑝𝑒𝑐 = 84, 𝑌𝑌ℎ_90_𝑠𝑝𝑒𝑐 =

64,  𝑌𝑌ℎ_50_𝑠𝑝𝑒𝑐 = 24 }.   

Low predicted accuracy fidelity corresponds to a sigma deviation range of -30% to +40% per Table 4.2-1.  

Correspondingly, and as detailed in Section 4.2.1 (Figure 4.2.1-3), if predicted error covariance matrices 

are somewhere within (1 − 0.30)2 to (1 + 0.40)2 times the corresponding true error covariance 

matrices, there is greater than a 90% probability that validation will pass as desired.  On the other hand, 

if predicted error covariance matrices are less than approximately (1 − 0.40)2 or greater than 

approximately (1 + 0.55)2 times the corresponding true error covariance matrices, there is less than a 

5% probability that validation will pass.   
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Therefore, following successful validation of the NSG Geolocation System’s predicted accuracy 

requirements, it is expected with reasonable confidence that a predicted error covariance matrix 

corresponding to an arbitrary geolocation (extraction) is between (1 − 0.30)2 to (1 + 0.40)2 times the 

true but unknown error covariance matrix.  Correspondingly, a predicted 𝐶𝐸90 computed from this 

predicted error covariance matrix is somewhere between 30% too small to 40% too large.  Although this 

range of values is larger than desired, it is unavoidable and the NSG/user community’s knowledge of its 

applicability is far more preferable than the various alternatives which include: (1) the non-computation 

of predicted accuracies, (2) the computation of predicted accuracies with no real pedigree, or (3) the 

specification of a higher predicted accuracy fidelity with the subsequent continued failure of its 

validation.   

As a conservative option, if critical actions are based on the predicted scalar accuracy metric 𝐶𝐸90, it 

can be subsequently scaled by a factor of approximately 1/(1 − 0.30) = 1.43. This is preferable over 

scaling the predicted error covariance itself, significantly reducing its information for other tasks, such as 

fusion.  In addition, the (non-inflated) predicted error covariance still remains the best estimate of the 

true error covariance matrix. 

Validation of predicted accuracy requirements is “plot friendly” 

The overall specification and validation process for predicted accuracy is “plot-friendly”, as illustrated in 

Figure 4.2-3 below which presents results corresponding to 100 i.i.d. error samples.  

Each (non-normalized) horizontal radial error sample is plotted relative to the y-axis as a function of its 

corresponding predicted radial at the 90% probability level relative to the x-axis.  The blue (middle) line 

corresponds to the 90% normalized error test, and the magenta (upper) and red (lower) lines to the 99% 

and 50% probability-level normalized error tests, respectively.  Per Table 4.2-2, the percentage of blue 

circles under the magenta line must be greater than or equal to 95%, the percentage of blue circles 

under the blue line must be greater than or equal to 83%, and the percentage of blue circles above the 

red line must be greater than or equal to 39% in order to pass validation of predicted accuracy 

requirements.  In this example, actual percentages were 97%, 87%, and 50%, respectively.  Each of the 

three tests passed – validation of predicted horizontal accuracy was successful. 
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Figure 4.2-3: Graphical representation of the three normalized error tests corresponding to horizontal 

radial errors, 100 i.i.d. error samples, and high predicted accuracy fidelity 

(Note: as illustrated in Figure 4.2-3, the blue line has a slope of 1 (or 𝑑90/𝑑90) whereas the magenta and 

red lines have larger (𝑑99/𝑑90) and smaller (𝑑50/𝑑90) slopes, respectively.  This is due to the plot’s x-axis 

corresponding to 90% probability-level predicted radials for which the blue line is directly applicable – 

see Section 5.2.3 for additional details.) 

The normalized error test at the 50% level corresponds to the percentage of (non-normalized) horizontal  

radial error samples above, not below, the red line.  Thus, all three one-sided tests work “in concert” 

and in a practical manner to ensure that predicted horizontal accuracy values are neither too small nor 

too large relative to their corresponding radial errors.  The “below the line” requirement for the 

normalized error tests at the 99% and 90% probability-levels, ensure that radial errors are not 

inconsistent with their predicted magnitudes (predicted radials) – not excessively large.  The “above the 

line” requirement for the normalized error at the 50% level ensures that radial errors are not 

inconsistent with their predicted magnitudes – not excessively small.  This is further illustrated 

conceptually in Figure 4.2-4 below.  The 99% and 90% probability-level tests prevent the red-circle 

outliers (the 99% test the more extreme outliers), and the 50% probability-level test prevents the dark-

red circle outliers.  In particular, the latter test prevents artificial inflation of predicted error covariance 

matrices such that validation is virtually guaranteed to (incorrectly) pass. 
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Figure 4.2-4: Conceptual graphic of the three probability-level  

normalized error tests for validation of predicted horizontal accuracy (all test lines blue) 

Validation is based on predicted radials computed from the predicted error covariance matrix but 

scalar accuracy metrics can be substituted if necessary 

The above specification and validation test of predicted accuracy utilized predicted radials to normalize 

radial error samples.  These predicted radials were generated directly from the predicted (full) error 

covariance matrix – the baseline approach as detailed in Equation (4.2-2) and also termed “ellipsoidal-

based” for reasons explained below.  Predicted scalar accuracy metrics, such as 𝐶𝐸90, can be used 

instead as the predicted radials, as documented later in Sections 5.2 and 5.4.3.  However, even though 

predicted scalar accuracy metrics play an important overall role in the NSG (see TGD 1, Section 5.6), the 

baseline approach is preferred for the validation of predicted accuracy as the corresponding predicted 

radials are “closer” to the full-content of the predicted error covariance matrix [7].   

This is demonstrated in Figure 4.2.5 below, which presents an example of a 0.9 probability error ellipse 

and a CE90 circle, both generated from the same error covariance matrix.  As discussed in TGD 1, 

Section 5.5.1 , the error ellipse, along with its specified level of probability (0.9), is actually equivalent to 

the error covariance matrix – one can be uniquely derived from the other.  However, as seen in the 

figure, the CE90 circle is not equivalent to the error ellipse – many different error ellipses correspond to 

the same CE90 circle, such as a rotated error ellipse, an error ellipse with smaller/larger semi-

major/semi-minor axes of correct proportions (e.g., an error ellipse identical to the CE90 circle), etc.  

Therefore, the CE90 circle is not equivalent to the error covariance matrix.   

Consequently, predicted radials generated from a predicted error covariance using the baseline 

approach will conform to the boundary of the error ellipse, as desired and as illustrated previously in 

Figure 4.2-1.  However, CE90s, the radius of the CE90 circle, will not – their values are constant for a 

given predicted error covariance matrix: typically too big and occasionally too small per the ellipse 

boundary.    
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Figure 4.2-5: 90% error ellipse and corresponding CE90 circle; both generated using the same  (full) error 

covariance matrix; both contain 0.90 probability, but the circle requires more area to do so 

As discussed in Section 5.4.3, this is not a problem as long as the ellipse is not too elongated, i.e., if the 

ratio of its semi-minor to semi-major axis is approximately greater than 0.5.  If this is not the case: (1) 

CE90 is not reasonably representative of actual predicted radials, and (2) the normalized error tolerance 

values {𝑌𝑌ℎ_99_𝑠𝑝𝑒𝑐 , 𝑌𝑌ℎ_90_𝑠𝑝𝑒𝑐 , 𝑌𝑌ℎ_50_𝑠𝑝𝑒𝑐 } corresponding to the use of CE90 are a function of this 

ratio and complicated to both derive and to utilize. 

A specific example of the use of scalar accuracy metrics for the normalization of radial errors and 

corresponding plots is presented in Section 5.2.3.5 and corresponds to a ratio approximately equal to 

0.8.  It further notes that, unlike with the baseline method, a combined plot of the results of all three 

normalized error tests (magenta, blue, and red lines) is not applicable – three separate plots are 

required. 

Finally, it must be emphasized that the non-baseline use of scalar accuracy metrics for the validation of 

predicted accuracy is to be implemented only if necessary: for example, if only scalar accuracy metrics 

computed from the full predicted error covariance matrix are available to the validation process – not 

the actual error covariance matrix itself. 

4.2.1 Validation errors and confidence in passing validation versus sigma deviation 

Finally, one last feature of the validation process for predicted accuracy is as follows: the three 

simultaneous normalized error tests at the different probability levels (99%, 90%, and 50%), along with 

the recommended values for their corresponding specified tolerances (see Table 4.2-2), are used in 

concert to minimize Type I validation errors and Type II validation errors.  Type 1 validation errors 

correspond to predicted accuracy error covariance matrices consistent with the desired level of 

predicted accuracy fidelity, but at least one of the three normalized error validation tests fails; i.e., 

validation fails incorrectly.  Type II validation errors correspond to predicted accuracy error covariance 
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matrices inconsistent with the desired level of predicted accuracy fidelity, yet all three normalized error 

tests pass; i.e., validation passes incorrectly.   

This is illustrated in Figure 4.2.1-1 which presents the confidence in passing the overall predicted 

accuracy validation process versus “sigma deviation” of predicted error covariance matrices relative to 

the true (but unknown) actual error covariance matrices.  For example, a sigma deviation of -30% 

corresponds to the predicted error covariance matrix equal to (1.0 - 0.30)^2 times (all elements or 

components of) the true error covariance matrix, i.e., optimistic predicted accuracy.  A deviation of 

+10% corresponds to the predicted error covariance matrix equal to (1.0 + 0.10)^2 times the true error 

covariance matrix, i.e., pessimistic (conservative) predicted accuracy.   

 
Figure 4.2.1-1: Confidence in passing all three normalized error tests vs. sigma deviation for horizontal 

errors: high predicted accuracy fidelity and the use of 100 i.i.d. error samples specified 

 

In particular, Figure 4.2.1-1 corresponds to the use of 100 i.i.d. error samples and high predicted 

accuracy fidelity; thus, the values {𝑌𝑌ℎ_99_𝑠𝑝𝑒𝑐 = 95 , 𝑌𝑌ℎ_90_𝑠𝑝𝑒𝑐 = 83 , 𝑌𝑌ℎ_50_𝑠𝑝𝑒𝑐 = 39 } were utilized 

per Table 4.2-2 for the normalized error tests as defined in Equation (4.2-1).  Furthermore, high 

predicted accuracy fidelity is defined as corresponding to a sigma deviation equal to between -5% to 

+5% per Table 4.2-1, or more precisely, the predicted error covariance matrix satisfies the relationship:  

(1 − 𝑠𝑖𝑔_𝑑𝑒𝑣𝑙)
2𝐶𝑋_𝑡𝑟𝑢𝑒 ≤ 𝐶𝑋_𝑝𝑟𝑒𝑑 ≤ (1 + 𝑠𝑖𝑔_𝑑𝑒𝑣𝑟)

2𝐶𝑋_𝑡𝑟𝑢𝑒.  (For contrast, medium predicted 

accuracy fidelity is defined as corresponding to a sigma deviation between -15% to +20%.) 

Note that in Figure 4.2.1-1 there is a confidence of at least 90% (second highest horizontal dotted 

magenta line) that validation will pass in the desired sigma deviation range (-5% to +5%) and very little 
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confidence (highly unlikely) that validation will pass outside of the desired sigma deviation range, as 

desired.  Also, if a greater number of samples were used (and Table 4.2.2 entries selected 

appropriately), there would be less “roll-off” in the figure, i.e., confidence would drop-off faster after 

the range of desired fidelity is exceeded.  This is illustrated in Figure 4.2.1-2, identical to Figure 4.2.1-1 

except that 400 i.i.d. samples are applicable. 

 

Figure 4.2.1-2: Confidence in passing all three normalized error tests vs. sigma deviation for horizontal 

errors: high predicted accuracy fidelity and the use of 400 i.i.d. error samples specified 

 

Finally, if a lower level of predicted accuracy fidelity were specified (medium or low) as appropriate for a 

specific NSG-system, possibly due to significantly varied operational scenarios or error models (error 

propagation) with lower fidelity in the extraction process itself, the confidence would remain at least 

90% over a larger range of sigma deviation consistent with the specified level of predicted accuracy 

fidelity.  This is illustrated in Figure 4.2.1-3 for low predicted accuracy fidelity (sigma deviation from -

30% to +40%) and 100 i.i.d. error samples.   
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Figure 4.2.1-3: Confidence in passing all three normalized error tests vs. sigma deviation for horizontal 

errors: low predicted accuracy fidelity and the use of 100 i.i.d. error samples specified 

 

Section 5.4.2 provides more details regarding the above plots and their correspondence to the level of 

predicted accuracy fidelity.  It also discusses the levels of predicted accuracy fidelity per se, including the 

non-symmetric sigma deviation ranges corresponding to low and medium fidelity levels.  Section 5.4.2 

also contains more plots similar to the above plots but corresponding to different combinations of 

predicted accuracy fidelity and number of samples. 

4.2.2 Recommended Number of Error Samples 

At least 100 i.i.d. error samples are recommended for the validation of predicted horizontal accuracy 

regardless the desired level of predicted accuracy fidelity.  This recommendation is consistent with the 

recommended number of i.i.d. error samples for accuracy (Section 4.1.1) and is also such that the 

aforementioned “roll-off” (Figure 4.2.1-1) is reasonably fast outside of the desired sigma deviation 

(predicted accuracy fidelity) range.  (These same recommendations are applicable to the validation of 

predicted vertical and 3d accuracy requirements as well.) 

As few as 40 i.i.d. errors samples, a firm minimum, can also be used for formal validation, with the 

corresponding restrictive caveat that “roll-off” or Type II validation errors will be larger than desired.  

Type I and Type II predicted accuracy validation errors were discussed in the previous subsection and 

are more formally defined as follows:   

Type I validation errors are defined as the event that actual predicted accuracy fidelity is as specified 

(low, medium, or high), but validation of predicted accuracy incorrectly fails. 
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Type II validation errors are defined as the event that actual predicted accuracy is not as specified (low, 

medium, or high), but validation of predicted accuracy incorrectly passes. 

Minimization of Type I validation errors is a “given” by the method in which the normalized error 

tolerances were developed – there is a “built-in” probability or confidence of at least 90% that validation 

will pass when it should, and thus less than a 10% probability of a Type I validation error guaranteed.  

The values of the normalized error tolerances of Table 4.2-2 are consistent with this methodology - see 

Section 5.4 for further details. 

Type II validation errors are minimized by the use of more i.i.d. samples – the larger the number of 

samples, the faster the “roll-off” in the confidence of passing validation after the desired sigma 

deviation range is exceeded as described in the previous subsection. 

4.2.3 Pseudo-code for the Validation of Predicted Accuracy Requirements 

Appendix C contains pseudo-code (MATLAB) that performs the entire predicted accuracy validation 

process given the appropriate inputs per accompanying documentation and in compliance with the 

above Section 4.2 overview and the corresponding details presented in Section 5.2.   Pseudo-code 

output includes plots similar to Figure 4.2-3 presented earlier.  Appendix C also contains examples of the 

pseudo-code’s explicit use. 

4.3 Guide to Detailed Technical Content 
The following presents a guide to Section 5, references provided in Section 7, and the various 

appendices of this document.  After this more “formal” guide, a “practical” guide is also presented that 

identifies recommended (sub)sections to the general reader (non-implementer) and those that can be 

by-passed, if so desired. 

When a section is referenced, all of its underlying (sub)sections are assumed to be referenced as well, 

unless specifically stated otherwise. 

 Section 5.1 describes how to specify and validate (absolute) accuracy requirements, and 

includes various Monte-Carlo simulation-based examples.  Portions of this section are in 

“specification-like” and “bulletized” form in order to present details in a concise manner and 

appropriate format.  Section 5.1 is the detailed companion to Section 4.1 already presented. 

 Section 5.2 describes how to specify and validate (absolute) predicted accuracy requirements, 

and includes various Monte-Carlo simulation-based examples.  Portions of this section are in 

“specification-like” and “bulletized” form in order to present details in a concise manner and 

appropriate format.  Section 5.2 is the detailed companion to Section 4.2 already presented. 

 Section 5.3 describes how to specify and validate relative accuracy and predicted relative 

accuracy requirements.  As opposed to the explicit details of Sections 5.1 and 5.2, for document 

efficiency it summarizes changes required to these earlier sections such that they are applicable 

to relative accuracy. 

 Section 5.4 discusses and presents recommended and explicit values for the normalized error 

test tolerances at the 99%, 90% and 50% probability-levels, which are key to the specification 

and validation of predicted accuracy requirements and referenced in both Sections 5.2 and 5.3.  
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These values take into account both the expected number of i.i.d. samples available to 

validation, and the desired (specified) degree of fidelity of the predicted statistical error models 

in the corresponding NSG system.  The latter is directly related to the fidelity of predicted 

accuracy and is categorized by simple and convenient “high”, “medium”, and “low” summary 

descriptors.  This section also discusses recommended future research. 

 Section 5.5 discusses the relationships between the various predicted accuracy validation tests, 

the plotting of error samples versus their corresponding predicted accuracy, and various 

probability distributions of related random variables, including the Chi-square distribution. 

 Section 5.6 discusses the appropriate use (when/how) of extra but correlated error samples in 

validation. 

 Section 5.7 discusses the desired characteristics of ground truth and their effect on validation. 

 References (Section 7) include those directly related to the specification and validation of 

accuracy [7], ground truth [1], [4], [6], and design of experiment for the evaluation of tracking 

system accuracy and corresponding characterization [3].  In addition, Reference [5] presents an 

alternate overview of the contents of this document. 

o Reference [3] is rather extensive, includes theoretical derivations, and concentrates on 

the characterization of accuracy using parametric model-building and the computation 

of sample-based statistics of Target Location Errors (TLE) as opposed to specification 

and validation of accuracy per se.  Sample-based statistics include scalar accuracy 

metrics at multiple levels of probability and (direction dependent) error ellipsoids 

previously discussed in TGD 1, TGD 2a, and TGD 2b.  

o Reference [5] summarizes Sections 4, 4.1, and 4.2 of this document in a somewhat 

easier to read fashion with less detail and a slightly different persepective.   

The references listed in Section 7 are in addition to other TGD documents which are referenced 

throughout Section 4 and Section 5.   

 Appendices consist primarily of pseudo-code (MATLAB) that support both the various 

investigations and examples contained in Section 4 and Section 5, as well as explicit pseudo-

code for “formal” validation of both accuracy and predicted accuracy requirements. 

Practical guide 

The following assumes that Section 4 has already been read.  Furthermore, some of the material is 

unique to Section 4, such as the recommended number of i.i.d. error samples discussed in Sections 4.1 

and 4.2: 

Much of the material in Sections 5.1 and 5.2 has already been covered in Sections 4.1 and 4.2, 

respectively, but is now covered at a more detailed level, including more examples.  As such, Sections 

5.1 and 5.2 may not be of interest to the general reader (non-implementer), other than the material at 

the start of Section 5 itself which is recommended to all.  In particular, it discusses the operational 

scenario for geolocation extraction; its top-level description should be included as part of a specification 

for accuracy and/or predicted accuracy.  
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Section 5.3 discusses relative accuracy and predicted relative accuracy and their validation and may not 

be of interest to the general reader – it is also somewhat succinct as it refers to concepts/terminology 

detailed in Sections 5.1 and 5.2, now expanded in order to address relative accuracy.   

Section 5.4 presents important additional information regarding the definition of the various classes of 

predicted accuracy fidelity (low, medium, high) and normalized error tolerance values and their effect 

on the specification and validation of predicted accuracy.  In addition, Section 5.4.3 discusses the non-

baseline use of scalar accuracy metrics (e.g., 𝐶𝐸𝑋𝑋) instead of the error ellipsoid (predicted full error 

covariance matrix) for the generation of predicted radials in the validation of predicted accuracy.  

Section 5.4.4 discusses recommended future research associated with the classification of predicted 

accuracy fidelity, the “tuning” of baseline values for normalized error tolerances, and the assumption of 

a multi-variate Gaussian distribution of underlying errors.  Section 5.4 is recommended to all, other than 

Section 5.4.3 which may only be of interest if the non-basline approach is to be implemented. 

Section 5.5 presents more background theory regarding the approach to the specification and validation 

of predicted accuracy.  This subsection is of interest to those concerned with underlying theory, and may 

not be of interest to the general reader. 

Sections 5.6 and 5.7 discuss important concepts and procedures not addressed in either Section 4 or 

elsewhere in Section 5 regarding the possible use of correlated error samples during validation (Section 

5.6), and the use/effect of ground truth points in validation (Section 5.7), respectively.  Subsection 5.6 

may not be of interest to the general reader, other than its beginning which is recommended to all.  

Section 5.7 is recommended to all. 

In summary, the following sections are recommended to all: 

 Section 4 (assumed already read) 

 Section 5 (beginning only), Section 5.4 (Section 5.4.3 optional), Section 5.6 (beginning only), 

Section 5.7 

Sections that were not listed directly above are also recommended to implementers/developers  of 

specifications, and in particular, to implementers of validation procedures.  They may be by-passed by 

the general reader, if so desired.  Various appendices are recommended to those interested per their 

references throughout the main body of the document. 
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5 Methodologies and Algorithms for Specification and Validation of 

Accuracy and Predicted Accuracy in the NSG  
This section presents detailed methodologies, definitions, equations and algorithms for both the 

specification and validation of accuracy requirements and predicted accuracy requirements. 

The following generic forms for the specification and validation of accuracy requirements (Section 5.1) 

and the specification and validation of predicted accuracy requirements (Section 5.2) are applicable to 

the extraction of geolocations.  A relevant geolocation is typically a ground location (coordinates) of a 

feature of interest.  All that is specifically assumed is that extractions are (near) optimal estimates of the 

geolocations, such as outputs from a properly modelled Weighted Least Squares estimator, using 

corresponding measurements in applicable sensor data, and which includes the corresponding solution 

(a posteriori) error covariance matrices.   As typical of most estimators, the estimator is assumed 

unbiased, i.e., solution errors have a mean-value of zero.  

A description of the appropriate operational scenario or constraints associated with the relevant 

extractions is also included in or pointed to by both the specification of accuracy and the specification of 

predicted accuracy requirements, including the assumed number of sensor measurements used by the 

extraction, their inter-related collection constraints, and their assumed explicit measurement error 

(one-sigma).  These are NSG geolocation system-specific and will vary by system.  They are not specified 

in the following descriptions (Sections 5.1 and 5.2) per se.  If for a given NSG geolocation system, 

operational constraints (typically sensor-to-geolocation of interest geometry or angles) are highly varied 

with corresponding accuracy varied in accordance, the operational constraints can be categorized with a 

separate set of accuracy requirements and validation applicable to each category (e.g. range of angles).  

However, there is an associated NSG trade-off: many categories allow for “tighter” accuracy 

requirements per category, but can lead to too few i.i.d. error samples available per category for 

validation. 

Examples of two different operational scenarios of NSG geolocation systems based on commercial EO 

satellite imagery provide NSG-relevant illustrations as follows: (1) MIG extractions of geolocation based 

on two (stereo) same-pass images, and (2) MIG extractions of a geolocation based on one (mono) image 

with an external elevation source.  MIG extractions are Multi-Image Geolocation (MIG) extractions that 

are based on Weighted Least Squares, include rigorous error propagation, and in particular, include the 

(a posteriori) error covariance matrix of the geolocation solution, i.e., the predicted error covariance 

matrix.  Section 5.8.1.1 of TGD 1 describes MIG in more detail, including the possible  use of only one 

image, i.e., “Multi-Image” in Multi-Image Geolocation extraction is a general term.  

Both of the above operational scenarios assume explicit measurement (mensuration) errors of one pixel 

(one-sigma) for both the line and sample image coordinates corresponding to the feature of interest 

identified in each image.  In addition, the description of each scenario’s specific collection geometry 

constraints, such as the allowed range of off-nadir imaging angles, etc., is provided in the specifications 

of accuracy and predicted accuracy requirements.   
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An example of a possible set of collection geometry constraints for commercial satellite EO stereo 

imagery is as follows [8]: (1) convergence angle between 30 and 45 degrees, and (2) (off-nadir) roll angle 

between 0 and 20 degrees, and (3) asymmetry angle between 0 and 10 degrees.  One set of specific 

accuracy requirements and one set of specific predicted accuracy requirements would be associated 

with this set of collection geometry constraints.  Furthermore, only one set of constraints and 

corresponding accuracy and predicted accuracy specifications  would be needed, as collection geometry 

is tightly controlled by the image provider. 

It is assumed that for a particular NSG geolocation system, both (absolute) accuracy and predicted 

(absolute) accuracy are specified and are to be validated.  As an option, relative accuracy and predicted 

relative accuracy (Section 5.3) can also be specified and validated.  For NSG geolocation systems based 

on commercial EO satellite imagery, relative accuracy requirements usually correspond to monoscopic 

(one-image plus elevation source) MIG extractions. 

Although the above examples correspond to image-based extraction of geolocation for ease of 

illustration, all related principles are equally applicable to the extraction of geolocations in general, 

regardless the type of sensor platform and/or sensor data.  As stated above, all that is specifically 

assumed is that extractions are based on (near) optimal estimates (e.g., Weighted Least Squares 

estimates) of geolocation using applicable sensor measurements, and include corresponding solution (a 

posteriori) error covariance matrices.  For convenience, we refer to these type of extractions as “MIG-

type” extractions in remaining subsections regardless the type of sensor platform and/or sensor data. 

5.1 Specification and Validation of Accuracy Requirements 
This section describes the recommended form and content for the specification of accuracy 

requirements and their corresponding validation.  The accuracy specification corresponds to any 

combination of vertical, horizontal, and 3d accuracy requirements.  (Note: 3d accuracy is sometimes 

referred to as spherical accuracy.) 

5.1.1 Accuracy Specification 

General statement: NSG geolocation system xxxx shall satisfy the following accuracy requirements: 

Explicit form: 

 𝜖𝑣𝑋𝑋 ≤ 𝐿𝐸𝑋𝑋𝑠𝑝𝑒𝑐    and/or                   (5.1.1-1) 

 𝜖ℎ𝑋𝑋 ≤ 𝐶𝐸𝑋𝑋𝑠𝑝𝑒𝑐       and/or       

 𝜖𝑟𝑋𝑋 ≤ 𝑆𝐸𝑋𝑋𝑠𝑝𝑒𝑐    

 

Values specified: 

 Probability level 𝑋𝑋  in %:  50, 90, or 95 (specify one, typically 90%). 

 Scalar accuracy metric requirements at the 𝑋𝑋% probability level: Linear Error 𝐿𝐸𝑋𝑋𝑠𝑝𝑒𝑐 and/or 

Circular Error 𝐶𝐸𝑋𝑋𝑠𝑝𝑒𝑐  and/or Spherical Error 𝑆𝐸𝑋𝑋𝑠𝑝𝑒𝑐 – values specified in meters (specify 

one, two, or three per “and/or” of Equation (5.1.1-1)). 

 Description of operational constraints for applicable NSG geolocation system. 
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Underlying Definitions and Computations: 

 Vertical radial error 𝜖𝑣 = √𝜖𝑧2, horizontal radial error 𝜖ℎ = √𝜖𝑥2 + 𝜖𝑦2, and 3d radial error 

𝜖𝑟 = √𝜖𝑥2 + 𝜖𝑦2 + 𝜖𝑧2  in meters. 

 𝜖𝑥, 𝜖𝑦, 𝜖𝑧 correspond to errors in 𝑥, 𝑦, 𝑧 geolocation coordinates, respectively, as represented in 

an appropriate ENU coordinate system.  

 𝜖𝑣𝑋𝑋 is the 𝑋𝑋 percentile of the random variable 𝜖𝑣, i.e., 𝑝𝑟𝑜𝑏{𝜖𝑣 ≤ 𝜖𝑣𝑋𝑋} = 0. 𝑋𝑋;              

𝜖ℎ𝑋𝑋 is the 𝑋𝑋 percentile of the random variable 𝜖ℎ;                                                                      

 𝜖𝑟𝑋𝑋 is the 𝑋𝑋 percentile of the random variable 𝜖𝑟;                                                                           

all 𝑋𝑋 percentiles have values in meters. 

o These percentiles are also termed 𝑋𝑋 % vertical Linear Error (𝐿𝐸𝑋𝑋), horizontal Circular 

Error (𝐶𝐸𝑋𝑋) and 3d or Spherical Error (𝑆𝐸𝑋𝑋), respectively. 

 𝑝𝑟𝑜𝑏 (probability) is taken over all possible MIG-type extractions within operational constraints 

for the corresponding NSG geolocation system. 

Recommended but optional additions: 

 Minimum number of i.i.d. error samples for corresponding formal validation of the accuracy 

requirement (specification) – value specified as 𝑛_𝑖𝑖𝑑_𝑚𝑖𝑛 _𝑎𝑐𝑐_𝑣𝑎𝑙 (unitless). 

 Confidence level for the corresponding formal validation of the accuracy requirement – value 

specified as 𝑐𝑜𝑛𝑓_𝑎𝑐𝑐_𝑣𝑎𝑙 in %: 50, 90, or 95 (specify one, typically 90%). 

Other optional additions: 

 Error bound (max none to exceed): 𝐿𝐸𝑚𝑎𝑥𝑠𝑝𝑒𝑐 and/or 𝐶𝐸𝑚𝑎𝑥𝑠𝑝𝑒𝑐 and/or 𝑆𝐸𝑚𝑎𝑥𝑠𝑝𝑒𝑐 – values 

specified in meters (specify one, two, or three values per “and/or” of Equation (5.1.1-1)).  

Corresponding definition assuming horizontal radial errors, and directly analogous for vertical 

and 3d radial errors: 

o 𝜖ℎ ≤ 𝐶𝐸𝑠𝑝𝑒𝑐_𝑚𝑎𝑥,                    (5.1.1-2) 

required for every MIG-type extraction within operational constraints;  

o Used to prevent very large error outliers in the NSG geolocation system (affects Quality 

Assurance requirements).  Also, 𝐶𝐸𝑠𝑝𝑒𝑐_𝑚𝑎𝑥 ≫ 𝐶𝐸𝑋𝑋𝑠𝑝𝑒𝑐 for specified probability 𝑋𝑋.  

Similar definitions and relationships are applicable for 𝐿𝐸𝑚𝑎𝑥𝑠𝑝𝑒𝑐 and 𝑆𝐸𝑚𝑎𝑥𝑠𝑝𝑒𝑐. 

 Multiple sets of the accuracy specification, one for each corresponding and identified set of 

operational constraints; of possible use for geolocation systems with highly varied operational 

constraints. 

 

Comments: 

 The explicit form for the accuracy specification in Equation (5.1.1-1) allows for any combination 

(one, two, or three) of vertical, horizontal, and 3d accuracy requirements. 
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 The accuracy requirements of Equation (5.1.1-1) can be written in the equivalent alternate form: 

o 𝑝𝑟𝑜𝑏{𝜖𝑣 ≤ 𝐿𝐸𝑋𝑋𝑠𝑝𝑒𝑐} ≥ 0.𝑋𝑋          and/or                (5.1.1-3)  

o 𝑝𝑟𝑜𝑏{𝜖ℎ ≤ 𝐶𝐸𝑋𝑋𝑠𝑝𝑒𝑐} ≥ 0. 𝑋𝑋          and/or 

o 𝑝𝑟𝑜𝑏{𝜖𝑟 ≤ 𝑆𝐸𝑋𝑋𝑠𝑝𝑒𝑐} ≥ 0. 𝑋𝑋.     

 The above alternate form for the accuracy specification can also be considered equivalent to the 

following “less succinct” form, as illustrated for horizontal errors: 

o  𝐶𝐸𝑋𝑋 ≤ 𝐶𝐸𝑋𝑋𝑠𝑝𝑒𝑐, where 𝐶𝐸𝑋𝑋 is considered taken over all arbitrary MIG-type 

extractions within the operational constraints, i.e., “𝑝𝑟𝑜𝑏” is “built-in” to 𝐶𝐸𝑋𝑋, and  

𝐶𝐸𝑋𝑋 ≡ 𝜖ℎ𝑋𝑋. 

 The appropriate values for the core accuracy requirements (e.g., 𝐶𝐸𝑋𝑋𝑠𝑝𝑒𝑐) typically correspond 

to a system-level error analysis and flow-down of requirements that are performed as part of 

system conceptual design, and further refined during system design and then initial operations. 

 The specified requirements 𝐿𝐸𝑋𝑋𝑠𝑝𝑒𝑐, 𝐶𝐸𝑋𝑋𝑠𝑝𝑒𝑐, and/or 𝑆𝐸𝑋𝑋𝑠𝑝𝑒𝑐 may correspond directly or 

indirectly to specified targeting accuracy requirements, CAT-level I, II,…, VI, corresponding to 

Target Location Error (TLE), if so desired. 

 It is possible that the values of  𝐿𝐸𝑋𝑋𝑠𝑝𝑒𝑐, 𝐶𝐸𝑋𝑋𝑠𝑝𝑒𝑐, and/or 𝑆𝐸𝑋𝑋𝑠𝑝𝑒𝑐 are to be converted 

from available  𝐿𝐸𝑌𝑌𝑠𝑝𝑒𝑐, 𝐶𝐸𝑌𝑌𝑠𝑝𝑒𝑐, and/or 𝑆𝐸𝑌𝑌𝑠𝑝𝑒𝑐  for convenience, where 𝑋𝑋 ≠ 𝑌𝑌.  

Conversion factors are presented in Section I.2 of Appendix I. 

5.1.2 Validation of Specified Accuracy Requirements 

General statement: The accuracy requirements for NSG geolocation system xxxx shall be validated as 

follows: 

Explicit form:   

 𝜖𝑣𝑋𝑋 ≤ 𝐿𝐸𝑋𝑋𝑠𝑝𝑒𝑐 validated if:  and/or                 (5.1.2-1) 

o   𝑙𝑢𝑏_𝜖𝑣𝑋𝑋 ≤ 𝐿𝐸𝑋𝑋𝑠𝑝𝑒𝑐 

 𝜖ℎ𝑋𝑋 ≤ 𝐶𝐸𝑋𝑋𝑠𝑝𝑒𝑐 validated if:  and/or       

o   𝑙𝑢𝑏_𝜖ℎ𝑋𝑋 ≤ 𝐶𝐸𝑋𝑋𝑠𝑝𝑒𝑐 

 𝜖𝑟𝑋𝑋 ≤ 𝑆𝐸𝑋𝑋𝑠𝑝𝑒𝑐 validated if:        

o   𝑙𝑢𝑏_𝜖𝑟𝑋𝑋 ≤ 𝑆𝐸𝑋𝑋𝑠𝑝𝑒𝑐 

 

Values specified: 

 Probability level 𝑋𝑋  in %:  50, 90, or 95 (specify one per Equation (5.1.2-1) consistent with 

Accuracy Specification’s Equation (5.1.1-1)). 

 Scalar accuracy metric requirements at the 𝑋𝑋% probability level:  𝐿𝐸𝑋𝑋𝑠𝑝𝑒𝑐 and/or 𝐶𝐸𝑋𝑋𝑠𝑝𝑒𝑐 

and/or 𝑆𝐸𝑋𝑋𝑠𝑝𝑒𝑐 – values specified in meters (specify one, two, or three per Equation (5.1.2-1) 

and consistent with the Accuracy Specification’s Equation (5.1.1-1)). 

 Optional: Minimum number of i.i.d. error samples for validation of the Accuracy Specification – 

value specified as 𝑛_𝑖𝑖𝑑_𝑚𝑖𝑛 _𝑎𝑐𝑐_𝑣𝑎𝑙 (unit-less) per Accuracy Specification of Section 5.1.1. 

 Optional: Confidence level for the corresponding validation of the Accuracy Specification – value 

specified as 𝑐𝑜𝑛𝑓_𝑎𝑐𝑐_𝑣𝑎𝑙 in %: 50, 90, or 95 (specify one) per Accuracy Specification of Section 

5.1.1. 
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Underlying Definitions and Computations: 

 The tests of Equation (5.1.2-1) are based on the computation of a percentile’s “least-upper- 

bound” in meters (e.g., 𝑙𝑢𝑏_𝜖ℎ𝑋𝑋 (meters)) based on order statistics of i.i.d. error samples at a 

(minimum) specified level of confidence of 𝑌𝑌%  (aka confidence-level or coefficient 𝛾), as 

defined in TGD 2b on sample statistics: 

o For example, 𝑙𝑢𝑏_𝜖ℎ𝑋𝑋 is defined as the smallest value such that the (true and 

unknown) percentile 𝜖ℎ𝑋𝑋 is less than 𝑙𝑢𝑏_𝜖ℎ𝑋𝑋 with probability of at least 𝑌𝑌%, i.e., 

𝑝𝑟𝑜𝑏{𝜖ℎ𝑋𝑋 ≤ 𝑙𝑢𝑏_𝜖ℎ𝑋𝑋} ≥ 0. 𝑌𝑌. 

o The actual value of 𝑙𝑢𝑏_𝜖ℎ𝑋𝑋 computed via order statistics is the value of the smallest 

ordered sample such that it is greater than or equal to 𝜖ℎ𝑋𝑋 with at least probability 

𝑌𝑌%. 

 𝑌𝑌 is equal to 50, 90, or 95%; its value may have been specified as part of the corresponding 

Accuracy Specification, in which case 𝑌𝑌 = 𝑐𝑜𝑛𝑓_𝑎𝑐𝑐_𝑣𝑎𝑙, otherwise 𝑌𝑌 = 90 % is the default 

confidence level.  Note that the value of the confidence 𝑌𝑌 % need not be the same as the value 

of the percentile’s probability 𝑋𝑋%. 

 Enough i.i.d. samples must be used such that a least-upper-bound is valid, i.e., its computed 

value is not contained in the open interval greater than the largest order sample value (see 

Section 5.3 of TGD 2b).  In addition, the tests of Equation (5.1.2-1) can only be formally 

performed if the number of i.i.d. samples is at least equal to 𝑛_𝑖𝑖𝑑_𝑚𝑖𝑛 _𝑎𝑐𝑐_𝑣𝑎𝑙, the optional 

value from the corresponding Accuracy Specification.   

 Either a one-sided confidence interval or the right end-point of a two sided confidence interval 

can be used as the least-upper-bound at a specified (minimum) level of confidence.  The two 

different confidence intervals are almost always equal if the number of i.i.d. samples is greater 

than 50, although when different, the one-sided is preferred.  Also, the one-sided confidence 

interval corresponds to the actual definition of (probabilistic) least-upper-bound regardless the 

number of samples.  See Section 5.3 of TGD 2b for a complete description of applicable order 

statistics and Sections 5.3.3.1, 5.3.6, and 5.4.1 of TGD 2b in particular regarding the equivalence 

of a one-sided confidence interval with the least-upper-bound and the use of a two-sided 

confidence interval as an approximation.  The pseudo-code for the validation of accuracy 

contained in Appendix B incorporates one-sided confidence intervals as the default. 

 The application of order statistics (see Section 5.3 of TGD 2b) is applicable to a scalar random 

variable, and for the application of interest in this document, either vertical, horizontal, or 3d 

radial errors – the specific type of radial error is immaterial.  For example, given 100 i.i.d. vertical 

radial error samples, the best estimate of the 90th percentile of vertical radial error is equal to 

the value of the 90th ordered sample.  Given 100 i.i.d. horizontal radial error samples instead, 

the best estimate of the 90th percentile of horizontal radial error is also  equal to the value of the 

90th ordered sample.   

 

Comments: 

 In general, the more i.i.d. samples used in the underlying computations for the tests of Equation 

(5.1.2-1), the better the Validation. 
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 The use of order statistics requires no assumption regarding the probability distribution of 

underlying errors, including whether their distribution is Gaussian or not or whether its mean-

value is zero or not – a very desirable feature, particularly for a general specification. 

 If only a very small number of i.i.d. samples are available (e.g. 20) and validation must be 

performed, at least an initial validation, order statistics are not applicable.  However, Section 

5.4.2 of TGD2b presents an alternative approach using classical sample statistics, i.e., the sample 

mean, sample standard deviation, and confidence intervals. 

 In addition to the above validation processing (Equation (5.1.2-1)), verification of a non-bias in 

each relevant error component (e.g., ϵx,ϵy,ϵz) is recommended based on various techniques 

presented in Section 5.2 of TGD2b (sample mean, hypothesis test, etc.).  If a significant bias is 

found, it should be reported, regardless the formal validation results, for corrective action. 

These techniques can also be augmented in order to better characterize errors and their sources 

by their representation in different coordinate systems that are sensor-dependent, such as a 

Cartesian coordinate system centered at the extracted point with the coordinate system’s z-axis 

aligned with the sensor’s line-of-sight direction [3].   

5.1.3 Example of the Specification of Accuracy Requirements and Corresponding Validation 

All of the specific numbers in the following example are for illustrative purposes only, and roughly 

approximate those applicable to geolocations solved for by a MIG-type extraction using stereo images 

from a commercial EO imaging satellite for specificity.   

5.1.3.1 Accuracy Specification Example 

 

  𝜖𝑣90 ≤ 𝐿𝐸90𝑠𝑝𝑒𝑐 = 5.5 𝑚𝑒𝑡𝑒𝑟𝑠     and                 (5.1.3.1-1) 

 𝜖ℎ90 ≤ 𝐶𝐸90𝑠𝑝𝑒𝑐 = 5.5 𝑚𝑒𝑡𝑒𝑟𝑠        

 

 Selected option: Error bound (max none to exceed) – 

o  𝐿𝐸𝑚𝑎𝑥𝑠𝑝𝑒𝑐 = 15 𝑚𝑒𝑡𝑒𝑟𝑠               (5.1.3.1-2) 

o 𝐶𝐸𝑚𝑎𝑥𝑠𝑝𝑒𝑐 = 15 𝑚𝑒𝑡𝑒𝑟𝑠 

 

 Operational constraints: Above requirements are applicable to MIG-type extractions of two 

(stereo) same-pass images with corresponding imaging geometry: max off-nadir angle=…, 

minimum convergence angle=…, minimum bisector elevation angle (BIE)=…, maximum 

asymmetry angle=…, etc.  Extraction mensuration errors are assumed equal to 1 pixel (one-

sigma) in each of the image line and sample directions. 

 Validation of the above is to be performed at a 𝑐𝑜𝑛𝑓_𝑎𝑐𝑐_𝑣𝑎𝑙 = 90% confidence level and with 

a minimum number of i.i.d. error samples 𝑛_𝑖𝑖𝑑_𝑚𝑖𝑛 _𝑎𝑐𝑐_𝑣𝑎𝑙 = 95. 
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5.1.3.2 Corresponding Validation Example  

Error samples 𝜖𝑋𝑠_𝑘 = [𝜖𝑥𝑠_𝑘 𝜖𝑦𝑠_𝑘 𝜖𝑧𝑠_𝑘]𝑇, 𝑘 = 1, . . ,100, were first simulated corresponding to 100 

i.i.d. samples of 3d geolocation error relative to ground truth (as opposed to using actual or “field” error 

samples).  Validation processing then generated 100 corresponding vertical radial error samples: 

𝜖𝑣𝑠_𝑘 = √𝜖𝑧𝑠_𝑘
2 , 𝑘 = 1, . .100.  Validation processing then also generated 100 corresponding horizontal 

radial error samples: 𝜖ℎ𝑠_𝑘 = √𝜖𝑥𝑠_𝑘 
2 + 𝜖𝑦𝑠_𝑘 

2 , 𝑘 = 1, . . ,100.  It then re-ordered both sets of radial error 

samples by ascending magnitude.   

From the TGD 2b Section 5.3 on order statistics, we know that for 100 i.i.d. samples and for a 90% 

confidence level for the least-upper-bound, the least-upper-bound for the 90th percentile of vertical 

radial error is equal to the 95th ordered samples 𝜖𝑣𝑠_95, and the least-upper bound-for the 90th 

percentile of horizontal radial error is equal to the 95th ordered samples 𝜖ℎ𝑠_95.  That is, 𝑙𝑢𝑏_𝜖𝑣90 =

𝜖𝑣𝑠_95 and 𝑙𝑢𝑏_𝜖ℎ90 = 𝜖ℎ𝑠_95.  (This particular least-upper-bound corresponds to both a one-sided 

confidence interval as well as the right end-point of a two-sided confidence interval as they are equal for 

100 samples and a 90% confidence level and a 90% percentile.) 

Results of the simulation, including evaluation of Equation (5.1.2-1) are as follows: 

𝑙𝑢𝑏_𝜖𝑣90 = 4.16 𝑚𝑒𝑡𝑒𝑟𝑠 < 𝐿𝐸90𝑠𝑝𝑒𝑐 = 5.5 𝑚𝑒𝑡𝑒𝑟𝑠, therefore, the validation test passed; 

𝑙𝑢𝑏_𝜖ℎ90 = 4.85 𝑚𝑒𝑡𝑒𝑟𝑠 < 𝐶𝐸90𝑠𝑝𝑒𝑐 = 5.5 𝑚𝑒𝑡𝑒𝑟𝑠, therefore, the validation test passed. 

And since both validation tests passed, overall validation of the accuracy requirements was successful.  

The non-ordered vertical error samples 𝜖𝑣𝑠_𝑘 and the non-ordered horizontal errors samples 𝜖ℎ𝑠_𝑘 are 

also plotted versus sample number in Figures 5.1.3.2-1 and 5.1.3.2-2, respectively.  The horizontal solid 

magenta (upper) line corresponds to the least-upper-bound of the 90th percentile at a 90% confidence 

level, and the horizontal dotted red (lower) line corresponds to the best estimate of the 90th percentile 

for added information. (Note: the plots also clearly indicate that the error bound requirements of 

Equation (5.1.1-2) were met as well.)  See Appendix F for the pseudo-code (MATLAB) that was used to 

perform the above simulation: generate error samples, evaluate Equation (5.1.2-1) and plot the results. 
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Figure 5.1.3.2-1: Vertical Radial Error Samples: magenta line is 𝑙𝑢𝑏_𝜖𝑣90 at a 90% confidence level, red 

dotted line is best estimate of 𝜖𝑣90 for added information; based on 100 i.i.d. error samples; compare  

𝑙𝑢𝑏_𝜖𝑣90 to corresponding specified requirement 𝐿𝐸90𝑠𝑝𝑒𝑐 = 5.5 𝑚𝑒𝑡𝑒𝑟𝑠  

 
Figure 5.1.3.2-2: Horizontal Radial Error Samples: magenta line is 𝑙𝑢𝑏_𝜖ℎ90 at a 90% confidence level, 

red dotted line is best estimate of 𝜖ℎ90 for added information; based on 100 i.i.d. error samples; 

compare 𝑙𝑢𝑏_𝜖ℎ90 to corresponding specified requirement 𝐶𝐸90𝑠𝑝𝑒𝑐 = 5.5 𝑚𝑒𝑡𝑒𝑟𝑠  
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Because the above example was based on simulation, we know that the true value for the vertical 90th 

percentile 𝜖𝑣90 (or 𝐿𝐸90 ) was approximately 3.5 meters, and the true value for the horizontal 90th 

percentile 𝜖ℎ90 (or 𝐶𝐸90 ) was approximately 4.6 meters.  Thus, the result of “passing” validation was 

indeed correct.  Further note that the true values of the percentiles were less than the required 

(specified) values of the percentiles, which should also be the case for NSG geolocation systems in 

general, i.e., a bit of “pad” or margin should be deliberately built into a reasonable specification for 

accuracy, particularly to account for only a reasonable number of i.i.d. error samples for corresponding 

validation. 

The above tests were based on least-upper-bounds to correctly and automatically account for the 

effects of statistical significance due to a finite number of samples.  The best estimate of the percentiles 

(as opposed to their least-upper-bounds) were also computed for additional information using order 

statistics as detailed in Section 5.3 of TGD 2b.  For this example, they are equal to the 90th ordered 

samples, i.e., the best estimate of 𝜖𝑣90 is equal to 𝜖𝑣𝑠_90 = 3.49 meters and the best estimate of 𝜖ℎ90 is 

equal to 𝜖ℎ𝑠_90 = 4.42 meter, as indicated in Figures 5.1.3.2-1 and 5.1.3.2-2. 

For a given confidence level, the greater the number of i.i.d. samples the “better” the validation via the 

least-upper-bound.  For example, for a 90% confidence level and 100 samples, 𝑙𝑢𝑏_𝜖ℎ90 corresponds to 

the 95th ordered sample, or 95% of the total number of ordered samples.  For 200 samples, 𝑙𝑢𝑏_𝜖ℎ90 

corresponds to the 186th ordered sample, or 93% of the total number of ordered samples.  There is less 

(relative) “pad” in the least-upper-bound when using 200 samples as opposed to using 100 samples in 

order to account for a finite number of samples. 

For the formal validation of accuracy requirements for a commercial satellite EO imaging system, we 

expect the number of samples to be closer to 200 than to 100, the latter used in this simulation-based 

example for convenience. 

5.2 Specification and Validation of Predicted Accuracy Requirements 
This section describes the recommended form and content for the specification of predicted accuracy 

requirements and their corresponding validation.  It is necessarily somewhat more complex than for 

accuracy requirements as it involves both error samples and their corresponding sample-specific 

predicted accuracy (error covariance matrix) from the MIG-type extractions.   

The predicted accuracy specification corresponds to any combination of predicted vertical, horizontal, 

and 3d accuracy. 
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5.2.1 Predicted Accuracy Specification 

General statement: NSG geolocation system xxxx shall satisfy the following predicted accuracy 

requirements: 

Explicit form: 

 Normalized vertical error                                                          and/or              (5.2.1-1) 

o 𝑝𝑟𝑜𝑏{𝜖𝑣_𝑛𝑜𝑟𝑚99 ≤ 1} ≥ 0. 𝑌𝑌𝑣_99_𝑠𝑝𝑒𝑐 

o 𝑝𝑟𝑜𝑏{𝜖𝑣_𝑛𝑜𝑟𝑚90 ≤ 1} ≥ 0. 𝑌𝑌𝑣_90_𝑠𝑝𝑒𝑐 

o 𝑝𝑟𝑜𝑏{𝜖𝑣_𝑛𝑜𝑟𝑚50 > 1} ≥ 0. 𝑌𝑌𝑣_50_𝑠𝑝𝑒𝑐 

 Normalized horizontal error                                                      and/or 

o 𝑝𝑟𝑜𝑏{𝜖ℎ_𝑛𝑜𝑟𝑚99 ≤ 1} ≥ 0. 𝑌𝑌ℎ_99_𝑠𝑝𝑒𝑐 

o 𝑝𝑟𝑜𝑏{𝜖ℎ_𝑛𝑜𝑟𝑚90 ≤ 1} ≥ 0. 𝑌𝑌ℎ_90_𝑠𝑝𝑒𝑐 

o 𝑝𝑟𝑜𝑏{𝜖ℎ_𝑛𝑜𝑟𝑚50 > 1} ≥ 0. 𝑌𝑌ℎ_50_𝑠𝑝𝑒𝑐 

 Normalized 3d error     

o 𝑝𝑟𝑜𝑏{𝜖𝑟_𝑛𝑜𝑟𝑚99 ≤ 1} ≥ 0. 𝑌𝑌𝑟_99_𝑠𝑝𝑒𝑐 

o 𝑝𝑟𝑜𝑏{𝜖𝑟_𝑛𝑜𝑟𝑚90 ≤ 1} ≥ 0. 𝑌𝑌𝑟_90_𝑠𝑝𝑒𝑐 

o 𝑝𝑟𝑜𝑏{𝜖𝑟_𝑛𝑜𝑟𝑚50 > 1} ≥ 0. 𝑌𝑌𝑟_50_𝑠𝑝𝑒𝑐 

Values specified: 

 Normalized error tolerance requirements at the 99, 90, and 50% probability levels:                         

{𝑌𝑌𝑣_99_𝑠𝑝𝑒𝑐 , 𝑌𝑌𝑣_90_𝑠𝑝𝑒𝑐 , 𝑌𝑌𝑣_50_𝑠𝑝𝑒𝑐 }   and/or  {𝑌𝑌ℎ_99_𝑠𝑝𝑒𝑐 , 𝑌𝑌ℎ_90_𝑠𝑝𝑒𝑐 , 𝑌𝑌ℎ_50_𝑠𝑝𝑒𝑐 }  and/or    

{𝑌𝑌𝑟_99_𝑠𝑝𝑒𝑐 , 𝑌𝑌𝑟_90_𝑠𝑝𝑒𝑐 , 𝑌𝑌𝑟_50_𝑠𝑝𝑒𝑐 } – values specified in % (specify one, two, or three sets of 

values per “and/or” of Equation (5.2.1-1). 

o Section 5.4 discusses recommended values in detail 

o In order to provide context, typical values of the above for a well-calibrated commercial 

satellite EO imaging system and numerous samples of error are on the order of  

{𝑌𝑌ℎ_99_𝑠𝑝𝑒𝑐 , 𝑌𝑌ℎ_90_𝑠𝑝𝑒𝑐 , 𝑌𝑌ℎ_50_𝑠𝑝𝑒𝑐 }={97, 85, 44 %}. 

o The normalized error tolerance requirements (e.g., {𝑌𝑌ℎ_99_𝑠𝑝𝑒𝑐 , 𝑌𝑌ℎ_90_𝑠𝑝𝑒𝑐,  

𝑌𝑌ℎ_50_𝑠𝑝𝑒𝑐 } are unrelated to the lub confidence-level 𝑌𝑌 for the validation of accuracy 

requirements – they just share some common symbology 

 Description of operational constraints for applicable NSG geolocation system specific to the 

particular system in consideration. 

Underlying Definitions and Computations: 

 Normalized error (unit-less) for a specified level of probability 𝑋𝑋 (99, 90, or 50%) and a specific 

sample 𝑘 corresponds to the sample radial error divided by the sample error’s predicted 

magnitude or predicted “radial” at the 𝑋𝑋 probability level, computed from the corresponding 

covariance matrix (predicted accuracy) 𝐶𝑋_𝑝𝑟𝑒𝑑𝑠_𝑘; the following are ellipsoidal-based 

normalized error samples, the default method for computation [7]:    

      

o 𝜖𝑣_𝑛𝑜𝑟𝑚𝑋𝑋_𝑠_𝑘 = (𝜖𝑋𝑠_𝑘
𝑇 (𝐶𝑋_𝑝𝑟𝑒𝑑𝑠_𝑘)−1𝜖𝑋𝑠_𝑘)1/2/𝑑𝑣_𝑋𝑋   (unit-less);               (5.2.1-2) 

𝜖𝑋𝑠_𝑘 = 𝜖𝑧𝑠_𝑘 (m), 𝐶𝑋_𝑝𝑟𝑒𝑑𝑠_𝑘 corresponding 1𝑥1 covariance matrix (m^2); 
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o 𝜖ℎ_𝑛𝑜𝑟𝑚𝑋𝑋_𝑠_𝑘 = (𝜖𝑋𝑠_𝑘
𝑇 (𝐶𝑋_𝑝𝑟𝑒𝑑𝑠_𝑘)

−1𝜖𝑋𝑠_𝑘)1/2/𝑑ℎ_𝑋𝑋  (unit-less);  

𝜖𝑋𝑠_𝑘 = [𝜖𝑥𝑠_𝑘 𝜖𝑦𝑠_𝑘]𝑇(m), 𝐶𝑋_𝑝𝑟𝑒𝑑𝑠_𝑘 corresponding 2𝑥2 covariance matrix (m^2) 

o 𝜖𝑟_𝑛𝑜𝑟𝑚𝑋𝑋_𝑘 = (𝜖𝑋𝑠_𝑘
𝑇 (𝐶𝑋_𝑝𝑟𝑒𝑑𝑠_𝑘)

−1𝜖𝑋𝑠_𝑘)
1/2/𝑑𝑟_𝑋𝑋   (unit-less); 

 𝜖𝑋𝑠_𝑘 = [𝜖𝑥𝑠_𝑘 𝜖𝑦𝑠_𝑘 𝜖𝑧𝑠_𝑘]𝑇(m), 𝐶𝑋_𝑝𝑟𝑒𝑑𝑠_𝑘  corresponding 3𝑥3 covariance matrix 

(m^2). 

 

o 𝑑𝑣_99 = 2.576, 𝑑𝑣_90 = 1.645, 𝑑𝑣_50 = 0.674     (unit-less)              (5.2.1-3) 

o 𝑑ℎ_99 = 3.035, 𝑑ℎ_90 = 2.146, 𝑑ℎ_50 = 1.177    (unit-less) 

o 𝑑𝑟_99 = 3.368, 𝑑𝑟_90 = 2.500, 𝑑𝑟_50 = 1.538     (unit-less). 

 

 Note that a normalized error sample at an 𝑋𝑋% probability level can also be equivalently and 

explicitly written as the ratio of the (vertical, horizontal, or 3d) radial error divided by its 

predicted radial at the 𝑋𝑋% probability level, illustrated as follows for horizontal normalized 

error:  

 

o 𝜖ℎ_𝑛𝑜𝑟𝑚𝑋𝑋_𝑠_𝑘 = (𝜖𝑋𝑠_𝑘
𝑇 (𝐶𝑋_𝑝𝑟𝑒𝑑𝑠_𝑘)

−1𝜖𝑋𝑠_𝑘)1/2/𝑑ℎ_𝑋𝑋                                    (5.2.1-4) 

  = |𝜖𝑋𝑠_𝑘|/(𝑑𝑋𝑋|𝜖𝑋𝑠_𝑘|(𝜖𝑋𝑠_𝑘
𝑇 (𝐶𝑋_𝑝𝑟𝑒𝑑𝑠_𝑘)

−1𝜖𝑋𝑠_𝑘)
−1/2) 

               = 𝜖ℎ𝑠_𝑘/(𝑑
𝑋𝑋

𝜖ℎ𝑠_𝑘(𝜖𝑋𝑠_𝑘
𝑇 (𝐶𝑋_𝑝𝑟𝑒𝑑

𝑠_𝑘
)−1𝜖𝑋𝑠_𝑘)

−1/2
)  

≡ 𝜖ℎ𝑠_𝑘/𝜖ℎ_𝑝𝑟𝑒𝑑_𝑟𝑎𝑑𝑖𝑎𝑙𝑋𝑋_𝑠_𝑘              

              

o sample k horizontal (radial) error 𝜖ℎ𝑠_𝑘 = |𝜖𝑋𝑠_𝑘| = √𝜖𝑥𝑠_𝑘
2 + 𝜖𝑦𝑠_𝑘

2  

o sample k horizontal predicted radial at an 𝑋𝑋% probability level 𝜖ℎ_𝑝𝑟𝑒𝑑_𝑟𝑎𝑑𝑖𝑎𝑙𝑋𝑋_𝑠_𝑘 

is equal to: 𝑑𝑋𝑋𝜖ℎ𝑠_𝑘(𝜖𝑋𝑠_𝑘
𝑇 (𝐶𝑋_𝑝𝑟𝑒𝑑𝑠_𝑘)−1𝜖𝑋𝑠_𝑘)−1/2 

o Equation (5.2.1-4) and its sub-bullets follow from the general equation for the error 

ellipsoid: 𝜖𝑋𝑇𝐶𝑋
−1𝜖𝑋 = 𝑑2, where the value of 𝑑 is parameterized by the dimension of 

𝜖𝑋 and the desired probability-level (see TGD2a Section 5.3) 𝜖ℎ_𝑛𝑜𝑟𝑚𝑋𝑋 ≡

𝜖ℎ/𝜖ℎ_𝑝𝑟𝑒𝑑_𝑟𝑎𝑑𝑖𝑎𝑙𝑋𝑋 

o example of horizontal error and its predicted 90% radial provided in Figure 5.2.1-1 

below using green 90% error ellipse computed from predicted error covariance matrix: 
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Figure 5.2.1-1: Example of horizontal error sample, its radial, and its corresponding 90% predicted radial 

 𝑝𝑟𝑜𝑏 in Equation (5.2.1-1) is defined over all MIG-type extractions within operational 

constraints. 

Recommended but optional additions: 

 Minimum number of i.i.d. error samples for corresponding formal validation of the predicted 

accuracy specification – value specified as 𝑛_𝑖𝑖𝑑_𝑚𝑖𝑛 _𝑝𝑟𝑒𝑑_𝑎𝑐𝑐_𝑣𝑎𝑙 (unitless). 

 Normalized error test at approximately 0.999999 probability (max none to exceed): 

o An optional fourth test for the applicable normalized errors, illustrated as follows for 

horizontal errors (similar tests for vertical and 3d errors): 𝜖ℎ_𝑛𝑜𝑟𝑚999999_𝑠_𝑘 < 1 for all 

samples, if not true for one or more samples, validation of predicted accuracy fails.  This 

prevents extreme outliers.  The value of 𝜖ℎ_𝑛𝑜𝑟𝑚999999_𝑠_𝑘  is computed as specified in 

Equation (5.2.1-2) (or Equation (5.2.1-4)) using the approximate value 𝑑ℎ_999999 = 5.3 

(similarly, 𝑑𝑣_999999 = 5 and 𝑑𝑟_999999 = 5.5). Corresponding probability corresponds to 

approximately less than “one in a million”. 

 

Other optional additions: 

 Compute scalar accuracy metric-based normalized errors instead of ellipsoidal-based normalized 

errors – required action specified as 𝑛𝑜𝑟𝑚_𝑒𝑟𝑟𝑜𝑟𝑠_𝑠𝑐𝑎𝑙𝑎𝑟_𝑎𝑐𝑐_𝑏𝑎𝑠𝑒𝑑 = “true”: 

 The scalar accuracy metric-based computation is directly analogous to the ellipsoidal-based 

computation of normalized error (Equation (5.2.1-4)), except that it utilizes the standard scalar 

accuracy metrics 𝐿𝐸, 𝐶𝐸, and 𝑆𝐸 at the appropriate probability level 𝑋𝑋% to normalize 𝜖𝑣, 𝜖ℎ, 

and 𝜖𝑟, respectively; for example, for normalized horizontal error: 

green: 90% error ellipse; black arrows: EN coord sys 

blue arrow magnitude: predicted 90% radial 

red arrow: hor error;  

magnitude: hor radial error 
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o 𝜀ℎ_𝑛𝑜𝑟𝑚𝑋𝑋_𝑠_𝑘 = 𝜖ℎ𝑠_𝑘/𝐶𝐸𝑋𝑋𝑠_𝑘,                              (5.2.1-5) 

where 𝐶𝐸𝑋𝑋𝑠_𝑘  is computed from the corresponding 2𝑥2 error covariance              

matrix 𝐶𝑋_𝑝𝑟𝑒𝑑𝑠_𝑘 corresponding to sample 𝑘. 

o Similarly, 𝜀𝑣_𝑛𝑜𝑟𝑚𝑋𝑋_𝑠_𝑘 = 𝜖𝑣𝑠_𝑘/𝐿𝐸𝑋𝑋𝑠_𝑘 and 𝜀𝑟_𝑛𝑜𝑟𝑚𝑋𝑋_𝑠_𝑘 = 𝜖𝑟𝑠_𝑘/𝑆𝐸𝑋𝑋𝑠_𝑘. 

o The same normalized error tolerance requirements (e.g.,  {𝑌𝑌ℎ_99_𝑠𝑝𝑒𝑐 , 𝑌𝑌ℎ_90_𝑠𝑝𝑒𝑐 

, 𝑌𝑌ℎ_50_𝑠𝑝𝑒𝑐 }) and tests (Equation (5.2.1-1)) are applicable when normalized errors are 

computed using scalar accuracy metrics, although the actual tolerance values may differ 

from those used with predicted radials (see Section 5.4.3) 

o See TGD 2a, Sections 5.4.2, 5.4.1, and 5.4.3, for the appropriate computation of 

𝐶𝐸𝑋𝑋𝑠_𝑘, 𝐿𝐸𝑋𝑋𝑠_𝑘, and 𝑆𝐸𝑋𝑋𝑠_𝑘, respectively, from 𝐶𝑋𝑝𝑟𝑒𝑑𝑠_𝑘. 

 If the normalized error test at 0.999999 probability level is an option as well, the 

following are applicable approximations: 𝐶𝐸999999 = (
𝑑ℎ_999999

𝑑ℎ_90
) 𝐶𝐸90, etc. 

 The scalar accuracy metric-based method for normalization of errors and related validation are 

equally “correct” as the ellipsoidal-based method described earlier.  However, the ellipsoidal-

based method is preferred as it is used to validate error covariance matrices output from MIG-

type extractions, not scalar accuracy metrics generated from these error covariance matrices 

which contain less inherent information (see TGD 1 for a corresponding discussion). 

Comments: 

 One reason to include normalized 3d errors in the specification (Equation (5.2.1-1)) is that they 

include the effects of correlation between vertical and horizontal components of error. 

 The normalized error requirements of Equation (5.2.1-1) and corresponding computations are 

based on an assumed mean-zero multi-variate Gaussian (Normal) distribution of underlying 

errors (these are component errors 𝜖𝑥, 𝜖𝑦, 𝜖𝑧 , not computed radial errors 𝜖𝑣, 𝜖ℎ, 𝜖𝑟): 

o In theory, if the assumed mean-zero multi-variate Gaussian distribution of errors was 

indeed applicable and if there were essentially an unlimited number of i.i.d. error 

samples, the specified values for the normalized error tolerance requirements would 

approach: 𝑌𝑌𝑣_99_𝑠𝑝𝑒𝑐 → 99, .. , 𝑌𝑌𝑟_50_𝑠𝑝𝑒𝑐 → 50.   

o An assumed and specific probability distribution of errors is required for the 

specification of predicted accuracy due to normalization of errors, but not required for 

the specification of accuracy (Section 5.1.1). 

 In practice, in order to compensate for only an approximate mean-zero multi-variate Gaussian 

distribution of errors and only a reasonable number of i.i.d. error samples, a specified 

normalized error tolerance requirement at the 𝑋𝑋 probability level corresponds to a value less 

than 𝑋𝑋%. 

o For example, assuming 100 samples, 𝑌𝑌ℎ_90_𝑠𝑝𝑒𝑐 = 83 instead of 𝑌𝑌ℎ_90_𝑠𝑝𝑒𝑐 = 90.  That 

is, the actual value specified dictates the amount of “approximation pad”; in this 

example, a pad of 90% − 83% = 7%. 

o Guidance regarding recommended specified values for 𝑌𝑌𝑣_99_𝑠𝑝𝑒𝑐, .. , 𝑌𝑌𝑟_50_𝑠𝑝𝑒𝑐 are 

provided in Section 5.4.2 of this document. 
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 Reasons for the practical specification of normalized error using three different probability 

levels (99, 90, and 50%) in Equation (5.2.1-1), and with an opposite inequality sign for the 50% 

probability, are discussed in Section 5.5 of this document. 

 Regarding Equation (5.2.1-5), if the error covariance matrix 𝐶𝑋_𝑝𝑟𝑒𝑑𝑠_𝑘 is not available to 

compute the various 𝐶𝐸𝑋𝑋𝑠_𝑘, and only 𝐶𝐸90𝑠_𝑘 is provided instead, only horizontal errors 

normalized at the 90% level can be rigorously computed:   

o As opposed to error ellipsoids, circular error does not have a fixed scale-factor between 

probability levels, and therefore, corresponding 𝐶𝐸99𝑠_𝑘 and 𝐶𝐸50𝑠_𝑘 cannot be 

rigorously computed from 𝐶𝐸90𝑠_𝑘 alone.  However, the other tests involving 𝐶𝐸99𝑠_𝑘 

and 𝐶𝐸50𝑠_𝑘 can be performed if need be by using the scaling approximations 

𝐶𝐸99𝑠_𝑘 ≅ (𝑑ℎ_99/𝑑ℎ_90)𝐶𝐸90𝑠_𝑘  and 𝐶𝐸50𝑠_𝑘 ≅ (𝑑ℎ_50/𝑑ℎ_90)𝐶𝐸90𝑘, as discussed in 

Section 5.4.3 of this document. 

5.2.2 Validation of Specified Predicted Accuracy Requirements 

General statement: The predicted accuracy requirements for NSG geolocation system xxxx shall be 

validated as follows: 

Explicit form: 

 Normalized vertical error                                                         and/or               (5.2.2-1) 

o 𝑝𝑟𝑜𝑏{𝜖𝑣_𝑛𝑜𝑟𝑚99 ≤ 1} ≥ 0. 𝑌𝑌𝑣_99_𝑠𝑝𝑒𝑐 validated if: 

 {% of 𝜖𝑣_𝑛𝑜𝑟𝑚99_𝑠_𝑘  samples≤ 1} ≥ 𝑌𝑌𝑣_99_𝑠𝑝𝑒𝑐 

o 𝑝𝑟𝑜𝑏{𝜖𝑣_𝑛𝑜𝑟𝑚90 ≤ 1} ≥ 0. 𝑌𝑌𝑣_90_𝑠𝑝𝑒𝑐 validated if: 

 {% of 𝜖𝑣_𝑛𝑜𝑟𝑚90_𝑠_𝑘  samples≤ 1} ≥ 𝑌𝑌𝑣_90_𝑠𝑝𝑒𝑐  

o 𝑝𝑟𝑜𝑏{𝜖𝑣_𝑛𝑜𝑟𝑚50 > 1} ≥ 0. 𝑌𝑌𝑣_50_𝑠𝑝𝑒𝑐 validated if: 

 {% of 𝜖𝑣_𝑛𝑜𝑟𝑚50_𝑠_𝑘 samples> 1} ≥ 𝑌𝑌𝑣_50__𝑠𝑝𝑒𝑐  

o All three of the above tests must pass for validation 

 Normalized horizontal error                                                        and/or 

o 𝑝𝑟𝑜𝑏{𝜖ℎ_𝑛𝑜𝑟𝑚99 ≤ 1} ≥ 0. 𝑌𝑌ℎ_99_𝑠𝑝𝑒𝑐 validated if: 

 {% of 𝜖ℎ_𝑛𝑜𝑟𝑚99_𝑠_𝑘  samples≤ 1} ≥ 𝑌𝑌ℎ_99_𝑠𝑝𝑒𝑐 

o 𝑝𝑟𝑜𝑏{𝜖ℎ_𝑛𝑜𝑟𝑚90 ≤ 1} ≥ 0. 𝑌𝑌ℎ_90_𝑠𝑝𝑒𝑐 validated if: 

 {% of 𝜖ℎ_𝑛𝑜𝑟𝑚90_𝑠_𝑘  samples≤ 1} ≥ 𝑌𝑌ℎ_90_𝑠𝑝𝑒𝑐  

o 𝑝𝑟𝑜𝑏{𝜖ℎ_𝑛𝑜𝑟𝑚50 > 1} ≥ 0. 𝑌𝑌ℎ_50_𝑠𝑝𝑒𝑐 validated if: 

 {% of 𝜖ℎ_𝑛𝑜𝑟𝑚50_𝑠_𝑘 samples> 1} ≥ 𝑌𝑌ℎ_50__𝑠𝑝𝑒𝑐  

o All three of the above tests must pass for validation 

 

 Normalized 3d error                                                         

o 𝑝𝑟𝑜𝑏{𝜖𝑟_𝑛𝑜𝑟𝑚99 ≤ 1} ≥ 0. 𝑌𝑌𝑟_99_𝑠𝑝𝑒𝑐 validated if: 

 {% of 𝜖𝑟_𝑛𝑜𝑟𝑚99_𝑠_𝑘  samples≤ 1} ≥ 𝑌𝑌𝑟_99_𝑠𝑝𝑒𝑐 

o 𝑝𝑟𝑜𝑏{𝜖𝑟_𝑛𝑜𝑟𝑚90 ≤ 1} ≥ 0. 𝑌𝑌𝑟_90_𝑠𝑝𝑒𝑐 validated if: 

 {% of 𝜖𝑟_𝑛𝑜𝑟𝑚90_𝑠_𝑘  samples≤ 1} ≥ 𝑌𝑌𝑟_90_𝑠𝑝𝑒𝑐  

o 𝑝𝑟𝑜𝑏{𝜖𝑟_𝑛𝑜𝑟𝑚50 > 1} ≥ 0. 𝑌𝑌𝑟_50_𝑠𝑝𝑒𝑐 validated if: 

 {% of 𝜖𝑟_𝑛𝑜𝑟𝑚50_𝑠_𝑘 samples> 1} ≥ 𝑌𝑌𝑟_50__𝑠𝑝𝑒𝑐  

o All three of the above tests must pass for validation 
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Values specified: 

 Normalized error tolerance requirements at the 99, 90, and 50% probability levels:                         

{𝑌𝑌𝑣_99_𝑠𝑝𝑒𝑐 , 𝑌𝑌𝑣_90_𝑠𝑝𝑒𝑐 , 𝑌𝑌𝑣_50_𝑠𝑝𝑒𝑐 }   and/or  {𝑌𝑌ℎ_99_𝑠𝑝𝑒𝑐 , 𝑌𝑌ℎ_90_𝑠𝑝𝑒𝑐 , 𝑌𝑌ℎ_50_𝑠𝑝𝑒𝑐 }  and/or    

{𝑌𝑌𝑟_99_𝑠𝑝𝑒𝑐 , 𝑌𝑌𝑟_90_𝑠𝑝𝑒𝑐 , 𝑌𝑌𝑟_50_𝑠𝑝𝑒𝑐 } – values specified in % (specify one, two, or three sets of 

values per Equation (5.2.2-1) consistent with Predicted Accuracy Specification’s Equation (5.2.1-

1)). 

 Optional: Minimum number of i.i.d. error samples for corresponding formal validation of the 

predicted accuracy specification – value specified as 𝑛_𝑖𝑖𝑑_𝑚𝑖𝑛 _𝑝𝑟𝑒𝑑_𝑎𝑐𝑐_𝑣𝑎𝑙 (unitless) per 

Predicted Accuracy Specification per Section 5.2.1. 

 Optional: Compute scalar accuracy metric-based normalized errors instead of ellipsoidal-based 

normalized errors – required action specified as 𝑛𝑜𝑟𝑚_𝑒𝑟𝑟𝑜𝑟𝑠_𝑠𝑐𝑎𝑙𝑎𝑟_𝑎𝑐𝑐_𝑏𝑎𝑠𝑒𝑑 = “true”. 

Underlying Definitions and Computations: 

 The normalized error sample computations (e.g., 𝜖ℎ_𝑛𝑜𝑟𝑚90_𝑠_𝑘) for the tests of Equation 

(5.2.2-1) are ellipsoidal-based unless specified otherwise by 𝑛𝑜𝑟𝑚_𝑒𝑟𝑟𝑜𝑟𝑠_𝑠𝑐𝑎𝑙𝑎𝑟_𝑎𝑐𝑐_𝑏𝑎𝑠𝑒𝑑 = 

“true”.  Both forms of computation are defined in Predicted Accuracy, Section 5.2.1. 

 If specified as such, there must be at least 𝑛_𝑖𝑖𝑑_𝑚𝑖𝑛 _𝑝𝑟𝑒𝑑_𝑎𝑐𝑐_𝑣𝑎𝑙 i.i.d. samples in order to 

perform the tests of Equation (5.2.2-1) for formal validation.   

 In addition, if the optional normalized error test at approximately 0.99999 probability (max none 

to exceed) was specified per Section 5.2.1, all corresponding normalized errors must be less 

than 1 or validation fails. 

Comments: 

 The larger the number of i.i.d. error samples used, the better (higher confidence) the validation 

of prediction accuracy capabilities: 

o If the minimum number of i.i.d. error samples was not specified as part of the Predicted 

Accuracy Specification (𝑛_𝑖𝑖𝑑_𝑚𝑖𝑛 _𝑝𝑟𝑒𝑑_𝑎𝑐𝑐_𝑣𝑎𝑙), guidance on a reasonable number of 

i.i.d. samples is provided in Section 5.4 of this document, as well as the effects of too 

few samples.  

5.2.3 Examples of the Specification of Predicted Accuracy Requirements and 

Corresponding Validation 

All specific numbers are for illustrative purposes only, and roughly approximate those applicable to 

geolocations using stereo images from a commercial EO imaging satellite for specificity.   

5.2.3.1 Predicted Accuracy Specification Example 1 

 Normalized 3d error                                                        

o 𝑝𝑟𝑜𝑏{𝜖𝑟_𝑛𝑜𝑟𝑚99 ≤ 1} ≥ 0. 𝑌𝑌𝑟_99_𝑠𝑝𝑒𝑐 = 0.94            (5.2.3.1-1) 

o 𝑝𝑟𝑜𝑏{𝜖𝑟_𝑛𝑜𝑟𝑚90 ≤ 1} ≥ 0. 𝑌𝑌𝑟_90_𝑠𝑝𝑒𝑐 = 0.82 

o 𝑝𝑟𝑜𝑏{𝜖𝑟_𝑛𝑜𝑟𝑚50 > 1} ≥ 0. 𝑌𝑌𝑟_50_𝑠𝑝𝑒𝑐 = 0.37 
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 The same operational constraints specified in the earlier Accuracy Specification example are 

applicable. 

 The above set of 0. 𝑌𝑌𝑟_99_𝑠𝑝𝑒𝑐 , .. , 0. 𝑌𝑌𝑟_50_𝑠𝑝𝑒𝑐 correspond to a minimum number of i.i.d. 

samples 𝑛_𝑖𝑖𝑑_𝑚𝑖𝑛 _𝑝𝑟𝑒𝑑_𝑎𝑐𝑐_𝑣𝑎𝑙  = 100.   

 The baseline ellipsoidal-approach for the computation of normalized error during Validation is 

applicable.  It is not over-written with the optional use of scalar accuracy metrics, i.e., the flag 

𝑛𝑜𝑟𝑚_𝑒𝑟𝑟𝑜𝑟𝑠_𝑠𝑐𝑎𝑙𝑎𝑟_𝑎𝑐𝑐_𝑏𝑎𝑠𝑒𝑑 = “false”. 

5.2.3.2 Corresponding Validation of Example 1: Case 1 

Error samples 𝜖𝑋𝑠_𝑘 = [𝜖𝑥𝑠_𝑘 𝜖𝑦𝑠_𝑘 𝜖𝑧𝑠_𝑘]𝑇, 𝑘 = 1, . . ,100, were first simulated corresponding to 100 

i.i.d. samples of 3d geolocation error relative to ground truth (as opposed to using actual or “field” error 

samples in an actual validation).  Their corresponding 3𝑥3 predicted error covariance matrices 

𝐶𝑋_𝑝𝑟𝑒𝑑𝑠_𝑘 were simulated as well.  The underlying sample solutions and their error covariance 

matrices correspond to MIG-type extractions.    

For this particular simulation, MIG-type extraction error covariance matrices were generated 

approximately 0.95^2 times their actual error covariance matrix counterparts, in order that predicted 

accuracies are somewhat optimistic. (This a scalar multiple of the entire error covariance matrix, i.e., 

each matrix element is multiplied by the scalar.)  Independent and identically distributed (i.i.d.) error 

samples were simulated consistent with their corresponding actual error covariance matrices. 

Validation of the predicted accuracy requirements then began by implementing Equation (5.2.1-2) to 

compute 𝜖𝑟_𝑛𝑜𝑟𝑚𝑋𝑋_𝑘 for samples 𝑘 = 1, . . ,100 for each of the three probability levels 𝑋𝑋 =

99, 90, 𝑎𝑛𝑑 50%.  Then, for each probability level, the percent of the normalized error samples that 

were less than or equal to 1.0 (greater than 1.0 for the 50% probability level) were computed 

corresponding to the specific tests of Equation (5.2.2-1) applicable to normalized 3d error.  Results are 

presented in Table 5.2.3.2-1 below.  (Note that Required Value(s) in the table correspond to {𝑌𝑌𝑟_99_𝑠𝑝𝑒𝑐 

, 𝑌𝑌𝑟_90_𝑠𝑝𝑒𝑐 , 𝑌𝑌𝑟_50_𝑠𝑝𝑒𝑐 }.)  All three one-sided tests passed (as required), so predicted accuracy was 

validated. 

The same pseudo-code (Appendix F) that was used for the validation of accuracy example of Section 

5.1.3-2 was used for the above validation of predicted accuracy example.   This simulation code was also 

used for the additional predicted accuracy validation examples presented in upcoming Sections 5.2.3.3 

and 5.2.3.5., with appropriate simulation parameter settings tailored to the particular example.  For a 

given example, the simulation generated appropriate MIG-type errors and predicted error covariance 

matrices for each sample, computed the corresponding predicted scalar metrics or scalar accuracy 

metrics for normalization of the error samples, performed the validation tests (Equation (5.2.2-1)), 

presented and plotted results. 
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Table 5.2.3.2-1: Predicted Accuracy Validation Results for 3d (Radial) Error (Example 1, Case 1) 

 

The results of these tests can also be illustrated graphically by plotting (non-normalized) 3d radial error 

samples versus the corresponding predicted radial at the 𝑋𝑋% probability level (see Equation (5.2.1-4)).  

This also gives more insight into errors versus their predicted accuracies as a function of predicted 

accuracy (radial) magnitude. 

Figures 5.2.3.2-1 through 5.2.3.2-3 present test results.  The percent of 3d radial error samples below 

the 45 degree line correspond to the percent of normalized 3d error samples less than or equal to one 

for the probability levels 𝑋𝑋 = 99 𝑎𝑛𝑑 90% (Figures 5.2.3.2-1 and 5.2.3.2-2, respectively).  The percent 

of 3d radial error samples above the 45 degree line correspond to the percent of normalized 3d error 

samples greater than one for the probability level 𝑋𝑋 = 50% (Figure 5.2.3.2-3). 

 
Figure 5.2.3.2-1: 3d radial error samples versus their corresponding predicted 99% radials –  

98% below the 45 degree line 

Probability level (%) normalized error Required Value pass/fail

samples <= 1 (%) (minimum)

99 98 94 pass

90 84 82 pass

Probability level % normalized error Required Value pass/fail

samples > 1 (minimum)

50 54 37 pass

0 1 2 3 4 5 6 7 8 9 10 11
0

1

2

3

4

5

6

7

8

9

10

11
radial (3d) error samples vs. predicted 99% ellipsod radial

predicted 99% ellipsoid radial (m)

ra
d
ia

l 
(3

d
) 

e
rr

o
r 

(m
)



NGA.SIG.0026.05_1.0_ACCSPEC 

 
 

58 

 

Figure 5.2.3.2-2: 3d radial error samples versus their corresponding predicted 90% radials –  

84% below the 45 degree line 

 

 

Figure 5.2.3.2-3: 3d radial error samples versus their corresponding predicted 50% radials –  

54% above the 45 degree line 

Because there is fixed scaling between predicted radials at different probability levels, we can also plot 

all three sets of results in one figure as radial error samples versus predicted 90% radials, as illustrated in 

Figure 5.2.3.2-4.  The magenta line corresponds to the 99% validation test’s (adjusted) 45 degree line, 
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the blue line to the 90% validation test’s (unadjusted) 45 degree line, and the red line to the 50% 

validation test’s (adjusted) 45 degree line.  The slope of the adjusted 99% line is equal to (𝑑𝑟_99/𝑑𝑟_90), 

the slope of the unadjusted 45 degree line is equal to 1, and the slope of the adjusted 50% line is equal 

to (𝑑𝑟_50/𝑑𝑟_90).  The number of error samples below the first two lines (magenta and blue) and the 

number of error samples above the last (red) line correspond to the results of the previous three figures 

as well as to Table 5.2.3.2-1. 

 
Figure 5.2.3.2-4: 3d radial error samples versus their corresponding predicted 90% radials with three 

validation test lines; Example 1-Case 1 results 

 

Finally, recall that the optional normalized error test at approximately 0.999999 probability (max none 

to exceed) was not specified.  If it had been, based on the above figure, it clearly would have passed as 

𝑑𝑟_999999/𝑑𝑟_99 ≅ 1.63, and no radial error sample is above 1.63 times its corresponding value on the 

99% line (upper magenta line) in Figure 5.2.3.2-4.  (The actual line corresponding to 99.9999% 

probability is typically not drawn in validation even when the optional test is specified.) 
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5.2.3.3 Corresponding Validation of Example 1: Case 2 

This example is exactly like the previous examples except that the predicted error covariance was 

approximately only 0.80^2 times the actual error covariance matrix, i.e., significantly optimistic.  The 

following presents the simulation results.  Validation of predicted accuracy fails as it should, i.e., 

predicted accuracy was too optimistic per the set of normalized error tolerance requirements: 

𝑌𝑌𝑟_99_𝑠𝑝𝑒𝑐 = 94, 𝑌𝑌𝑟_90_𝑠𝑝𝑒𝑐 = 82, and 𝑌𝑌𝑟_50_𝑠𝑝𝑒𝑐 = 37.  Section 5.4 discusses the use of these specific 

values. 

Table 5.2.3.3-1: Predicted Accuracy Validation Results for 3d (Radial) Error (Example 1, Case 2) 

 

 

 

Figure 5.2.3.3-1: 3d radial error samples versus their corresponding predicted 90% radials with three 

validation test lines; Example 1-Case 2 results 

 

Probability level (%) normalized error Required Value pass/fail

samples <= 1 (%) (minimum)

99 95 94 pass

90 73 82 fail

Probability level % normalized error Required Value pass/fail
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5.2.3.4 Predicted Accuracy Specification Example 2 

 Normalized vertical error                                                           and            (5.2.3.4-1) 

o 𝑝𝑟𝑜𝑏{𝜖𝑣_𝑛𝑜𝑟𝑚99 ≤ 1} ≥ 0. 𝑌𝑌𝑣_99_𝑠𝑝𝑒𝑐 = 0.95 

o 𝑝𝑟𝑜𝑏{𝜖𝑣_𝑛𝑜𝑟𝑚90 ≤ 1} ≥ 0. 𝑌𝑌𝑣_90_𝑠𝑝𝑒𝑐 = 0.83 

o 𝑝𝑟𝑜𝑏{𝜖𝑣_𝑛𝑜𝑟𝑚50 > 1} ≥ 0. 𝑌𝑌𝑣_50_𝑠𝑝𝑒𝑐 = 0.40 

 Normalized horizontal error                                                        

o 𝑝𝑟𝑜𝑏{𝜖ℎ_𝑛𝑜𝑟𝑚99 ≤ 1} ≥ 0. 𝑌𝑌ℎ_99_𝑠𝑝𝑒𝑐 = 0.95 

o 𝑝𝑟𝑜𝑏{𝜖ℎ_𝑛𝑜𝑟𝑚90 ≤ 1} ≥ 0. 𝑌𝑌ℎ_90_𝑠𝑝𝑒𝑐 = 0.83 

o 𝑝𝑟𝑜𝑏{𝜖ℎ_𝑛𝑜𝑟𝑚50 > 1} ≥ 0. 𝑌𝑌ℎ_50_𝑠𝑝𝑒𝑐 = 0.39 

 

 The same operational constraints specified in the above Accuracy Specification example are 

applicable. 

 The above set of 0. 𝑌𝑌𝑣_99_𝑠𝑝𝑒𝑐 , .. , 0. 𝑌𝑌ℎ_50_𝑠𝑝𝑒𝑐 correspond to a minimum number of i.i.d. 

samples 𝑛_𝑖𝑖𝑑_𝑚𝑖𝑛 _𝑝𝑟𝑒𝑑_𝑎𝑐𝑐_𝑣𝑎𝑙  = 100.   

 The baseline ellipsoidal-approach for the computation of normalized error during Validation is 

not applicable. It is over-written with the optional use of scalar accuracy, i.e., the indicator (or 

parameter “flag”) 𝑛𝑜𝑟𝑚_𝑒𝑟𝑟𝑜𝑟𝑠_𝑠𝑐𝑎𝑙𝑎𝑟_𝑎𝑐𝑐_𝑏𝑎𝑠𝑒𝑑 = “true”. 

5.2.3.5 Corresponding Validation of Example 2 

A similar simulation was performed as for Example 1.  However, corresponding validation of predicted 

accuracy was based on normalized vertical and horizontal error samples computed using predicted 

𝐿𝐸𝑋𝑋 and 𝐶𝐸𝑋𝑋 , respectively, instead of normalized 3d error samples computed using predicted 3d 

radials (see Equation (5.2.1-5)).  In addition, the predicted error covariance matrix was 1.03^2 times the 

actual error covariance matrix, i.e., slightly pessimistic. 

Results are presented below in a manner similar to those for Example 1, except that there are two sets 

of results, corresponding to vertical errors and horizontal errors, instead of the previous one set of 

results corresponding to 3d errors.  All tests pass.  Also note that there is no combined figure for all 

three tests for either vertical error samples or horizontal error samples.  This is because horizontal scalar 

accuracy metrics do not scale between probability levels.  (Only vertical scalar accuracy metrics scale.) 

The horizontal error (confidence) ellipses corresponding to simulated error covariance matrix samples 

were fairly non-elongated, i.e., a typical square root of the smallest to largest eigenvalue in an error 

covariance matrix was approximately 0.8.  This is typical for commercial E0 satellite imagery.  Also, the 

error covariance matrix samples alternate between one of two specific error covariance matrices, which 

correspond to only two different specific imaging scenarios for simplicity, both within the assumed 

operational constraints.    
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Table 5.2.3.5-1: Predicted Accuracy Validation Results for Vertical (Radial) Error (Example 2) 

 

 

 

Figure 5.2.3.5-1: Vertical radial error samples versus their corresponding predicted LE99 
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Figure 5.2.3.5-2: Vertical radial error samples versus their corresponding predicted LE90 

 

 

Figure 5.2.3.5-3: Vertical radial error samples versus their corresponding predicted LE50 
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Table 5.2.3.5-2: Predicted Accuracy Validation Results for Horizontal (Radial) Error (Example 2) 

 

 

 

 

Figure 5.2.3.5-4: Horizontal radial error samples versus their corresponding predicted CE99 
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Figure 5.2.3.5-5: Horizontal radial error samples versus their corresponding predicted CE90 

 

 

 

Figure 5.2.3.5-6: Horizontal radial error samples versus their corresponding predicted CE50 
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5.3 Relative Accuracy and Predicted Relative Accuracy Requirements and 

their Validation 
The specifications for (absolute) accuracy and predicted (absolute) accuracy documented in Section 5.1 

and Section 5.2, respectively, as well as their validation counterparts, are readily modified for the 

specification of relative accuracy and predicted relative accuracy between a pair of targets with the 

inclusion of distance-bin categories between the two geolocations, i.e., a set of requirements for each of 

multiple specified distance bins.  An example of a typical set of distance bins in terms of nautical miles is 

as follows: {𝑑𝑖𝑠𝑡1 < 1, 1 ≤ 𝑑𝑖𝑠𝑡2 < 15 , 15 ≤ 𝑑𝑖𝑠𝑡3 < 60,   60 ≤ 𝑑𝑖𝑠𝑡4}.  (Note: distances can also be 

specified in terms of other units, such as pixels, instead of nautical miles.) 

For each specified distance bin, the corresponding relative accuracy and predicted relative accuracy 

requirements corresponding to a pair of targets (geolocations) are duplicate in form to those previously 

documented for (absolute) accuracy and predicted (absolute) accuracy in Sections 5.1 and 5.2, 

respectively.  However, all corresponding specified errors and parameter values have “𝑟𝑒𝑙_𝑏𝑖𝑛_𝑖", where  

𝑖 = 1, . . , 𝑛 distance bins, added to their names, and associated processing is modified accordingly as 

detailed below.  In addition, the corresponding MIG-type extractions for each target in a target-pair are 

assumed generated using the same sensor data.  For example, if applicable sensor data corresponds to 

measurements of a target in a pair of stereo images, both targets are assumed extracted from that same 

pair of images. 

5.3.1 Changes in Notation and Underlying Calculations for Relative Accuracy 

As an example of the changes in notation for definitions and their underlying calculations from those 

corresponding to accuracy to those corresponding to relative accuracy, the following are applicable to 

horizontal (radial) errors and distance bin 2:  

 𝜖ℎ → 𝜖ℎ_𝑟𝑒𝑙_2  and  𝐶𝐸𝑋𝑋𝑠𝑝𝑒𝑐 → 𝑟𝑒𝑙_2_𝐶𝐸𝑋𝑋𝑠𝑝𝑒𝑐.               (5.3.1-1) 

 𝜖ℎ_𝑟𝑒𝑙_2 ≡ √(𝜖𝑥𝑠_𝑖 − 𝜖𝑥𝑠_𝑗)
2
+ (𝜖𝑦𝑠_𝑖 − 𝜖𝑦𝑠_𝑗)

2
 where 𝑖 and 𝑗 correspond to               (5.3.1-2) 

sample errors corresponding to two different geolocations with a corresponding distance 

between them within distance bin 2; note that 𝜖𝑋𝑠_𝑖 ≡ [𝜖𝑥𝑠_𝑖 𝜖𝑦𝑠_𝑖]𝑇.   

 Typically, the value 𝑟𝑒𝑙_2_𝐶𝐸𝑋𝑋𝑠𝑝𝑒𝑐 < 𝐶𝐸𝑋𝑋𝑠𝑝𝑒𝑐 : 

o the difference between the two geolocation errors typically becomes smaller the 

smaller the distance bin due to positively correlated errors between the two targets, 

i.e., the statistical cancelation of common error; 

o however, for large distance bins, 𝑟𝑒𝑙_2_𝐶𝐸𝑋𝑋𝑠𝑝𝑒𝑐 → √2𝐶𝐸𝑋𝑋𝑠𝑝𝑒𝑐, when errors 

between the two targets typically become uncorrelated.  
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5.3.2 Changes in Notation and Underlying Calculations for Predicted Relative Accuracy 

As an example of the changes in notation for definitions and their underlying calculations from those 

corresponding to predicted accuracy to those corresponding to predicted relative accuracy, the 

following are applicable to horizontal (radial) errors and distance bin 2:  

 𝜖ℎ_𝑛𝑜𝑟𝑚90 → 𝜖ℎ_𝑟𝑒𝑙_2_𝑛𝑜𝑟𝑚90  and  0. 𝑌𝑌ℎ_90_𝑠𝑝𝑒𝑐 → 𝑟𝑒𝑙_2_0. 𝑌𝑌ℎ_90_𝑠𝑝𝑒𝑐.             (5.3.2-1) 

 𝜖ℎ_𝑟𝑒𝑙_2_𝑛𝑜𝑟𝑚𝑋𝑋_𝑠_𝑘 = (𝜖𝑋𝑟𝑒𝑙𝑠_𝑘
𝑇 (𝑟𝑒𝑙_𝐶𝑋_𝑝𝑟𝑒𝑑𝑠_𝑘)−1𝜖𝑋𝑟𝑒𝑙𝑠_𝑘)1/2/𝑑ℎ_𝑋𝑋 (unit-less):  (5.3.2-2) 

o 𝜖𝑋𝑟𝑒𝑙𝑠_𝑘 ≡ 𝜖𝑋𝑠_𝑘𝑖 − 𝜖𝑋𝑠_𝑘𝑗, corresponding to unique sample pair 𝑘             (5.3.2-3) 

involving error samples for geolocations 𝑖 and 𝑗 within distance bin 2. 

o 𝑟𝑒𝑙_𝐶𝑋_𝑝𝑟𝑒𝑑𝑠_𝑘 ≡ 𝐶𝑋_𝑝𝑟𝑒𝑑𝑠_𝑘𝑖
+ 𝐶𝑋_𝑝𝑟𝑒𝑑𝑠_𝑘𝑗

− 𝐶𝑋_𝑝𝑟𝑒𝑑𝑠_𝑘𝑖𝑗
− 𝐶𝑋_𝑝𝑟𝑒𝑑𝑠_𝑘𝑗𝑖

:             (5.3.2-4) 

 𝑟𝑒𝑙_𝐶𝑋_𝑝𝑟𝑒𝑑𝑠_𝑘 is the predicted relative error covariance matrix for relative 

error sample (sample pair) 𝑘 

 𝐶𝑋_𝑝𝑟𝑒𝑑𝑠_𝑘𝑖
 is the predicted error covariance matrix for geolocation 𝑖 and 

𝐶𝑋_𝑝𝑟𝑒𝑑𝑠_𝑘𝑖𝑗
 is the predicted error cross-covariance matrix between  

geolocations 𝑖 and 𝑗. 

 If the non-default use of scalar accuracy metrics were specified for normalization of error for the 

predicted accuracy requirement, they are also specified for the normalization of relative error 

for the predicted relative accuracy requirement.  For example: 

o 𝜖ℎ_𝑟𝑒𝑙_2_𝑛𝑜𝑟𝑚𝑋𝑋_𝑠_𝑘 = 𝜖ℎ_𝑟𝑒𝑙_2𝑘/𝑟𝑒𝑙_𝐶𝐸𝑋𝑋𝑠_𝑘,                (5.3.2-5) 

where 𝑟𝑒𝑙_𝐶𝐸𝑋𝑋𝑠_𝑘  is computed from the 2𝑥2 error covariance matrix 𝑟𝑒𝑙_𝐶𝑋_𝑝𝑟𝑒𝑑𝑠_𝑘 

corresponding to the relative error sample 𝑘. 

 Typically 𝑟𝑒𝑙_2_0. 𝑌𝑌ℎ_90_𝑠𝑝𝑒𝑐 ≅ 0. 𝑌𝑌ℎ_90_𝑠𝑝𝑒𝑐, which is also typical for all other distance bins: 

o The assumption that errors are mean-zero multi-variate Gaussian distributed implies the 

same general characteristics for relative errors due to the properties of the multi-variate 

Gaussian probability distribution; thus the “pad” for a given probability distribution for 

normalized errors should remain approximately the same for normalized relative errors. 

5.3.3 Other Parameter Changes for Relative Accuracy and Predicted Relative Accuracy 

Other applicable parameters involve the minimum number of i.i.d. error samples and the required 

confidence level.  The values of the minimum number of i.i.d. error samples for relative accuracy and 

predicted relative accuracy are specified for each distance bin.  Independent samples dictate that, within 

a given distance bin (but not across bins), one error sample can be associated with one and only one 

sample-pair.  Specification of the minimum number of i.i.d. error samples per distance bin also accounts 

for typical distributions of samples: more in the “middle” distance bins and fewer in distance bins 

corresponding to either very small or very large distances. 

Validation processing for relative accuracy and predicted relative accuracy is virtually the same as for 

their absolute accuracy and predicted accuracy counterparts, other than the change in notation and 

processing described above.  Also, validation processing is performed for each specified distance bin. 

The above general descriptions can seem somewhat complicated due to “layers” of unavoidable 

notation, but actual relative accuracy and predicted relative accuracy requirements (and corresponding 

validation) are straightforward as illustrated by the following examples. Only two distance bins are 
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specified in the examples for simplicity, and underlying definitions (already covered in the above 

subsections) are not included.  Again, all specific numbers are for illustrative purposes only, and roughly 

approximate those applicable to geolocations extracted from single images from a commercial EO 

imaging satellite, i.e., monoscopic target extraction.  Note that in order to use independent error 

samples, corresponding images used for validation should not be same-pass images to minimize 

correlated sensor support data errors between the images.  Also, only one pair of MIG extractions 

should be used per distance bin per image – more on this later in Section 5.6.   

In addition, error samples are generated using the corresponding ground truth’s elevation value as the 

external elevation source in the MIG-type monoscopic target extraction.  Thus, specified relative 

horizontal accuracy and predicted relative horizontal accuracy are virtually independent of elevation 

error.  (Neither relative vertical or 3d accuracies or predicted relative vertical or 3d accuracies are 

applicable.) 

Subsection 5.3.4 presents an example of the specification of relative accuracy requirements, and 

Subsection 5.3.5 presents an example of the specification of predicted relative accuracy requirements.  

(Examples of corresponding validation are not included as they are straight-forward extensions of those 

corresponding to accuracy and predicted accuracy requirements.) 

5.3.4 Relative Accuracy Specification Example 

 Two distance bins in nautical miles: 𝑏𝑖𝑛_1 < 10 and 10 ≤ 𝑏𝑖𝑛_2 

 

 𝑝𝑟𝑜𝑏{𝜖ℎ_𝑟𝑒𝑙_1 ≤ 𝑟𝑒𝑙_1_𝐶𝐸90𝑠𝑝𝑒𝑐 = 2.5 𝑚𝑒𝑡𝑒𝑟𝑠} ≥ 0.90                         (5.3.4-1) 

 𝑝𝑟𝑜𝑏{𝜖ℎ_𝑟𝑒𝑙_2 ≤ 𝑟𝑒𝑙_2_𝐶𝐸90𝑠𝑝𝑒𝑐 = 4 𝑚𝑒𝑡𝑒𝑟𝑠} ≥ 0.90    

 

o Note that the equivalent alternate (non-percentile) form for specification was used 

above; see Equation (5.1.1-3) for their (absolute) accuracy specification counterparts.  

 

 Operational constraints: Above requirements applicable to MIG monoscopic extractions using 

corresponding imaging geometry constraints: max off-nadir angle=…etc.  Extraction 

mensuration errors assumed no larger than 1 pixel (one-sigma) in each of the image line and 

sample directions for each target. 

 Validation of the above should be performed at a 𝑐𝑜𝑛𝑓_𝑎𝑐𝑐_𝑣𝑎𝑙_𝑟𝑒𝑙 = 90 % confidence level 

and with a minimum number of individual  i.i.d. error samples 𝑛_𝑖𝑖𝑑_𝑚𝑖𝑛 _𝑎𝑐𝑐_𝑣𝑎𝑙_𝑟𝑒𝑙_1 = 75 

and 𝑛_𝑖𝑖𝑑_𝑚𝑖𝑛 _𝑎𝑐𝑐_𝑣𝑎𝑙_𝑟𝑒𝑙_2 =50  required. 
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5.3.5 Predicted Relative Accuracy Specification Example  

 normalized relative error bin_1                                                                  (5.3.5-1) 

o 𝑝𝑟𝑜𝑏{𝜖ℎ_𝑟𝑒𝑙_1_𝑛𝑜𝑟𝑚99 ≤ 1} ≥ 𝑟𝑒𝑙_1_0. 𝑌𝑌ℎ_99_𝑠𝑝𝑒𝑐 = 0.94 

o 𝑝𝑟𝑜𝑏{𝜖ℎ_𝑟𝑒𝑙_1_𝑛𝑜𝑟𝑚90 ≤ 1} ≥ 𝑟𝑒𝑙_1_0. 𝑌𝑌ℎ_90_𝑠𝑝𝑒𝑐 = 0.82 

o 𝑝𝑟𝑜𝑏{𝜖ℎ_𝑟𝑒𝑙_1_𝑛𝑜𝑟𝑚50 > 1} ≥ 𝑟𝑒𝑙_1_0. 𝑌𝑌ℎ_50_𝑠𝑝𝑒𝑐 = 0.37 

 normalized relative error bin_2                                                        

o 𝑝𝑟𝑜𝑏{𝜖ℎ_𝑟𝑒𝑙_2_𝑛𝑜𝑟𝑚99 ≤ 1} ≥ 𝑟𝑒𝑙_2_0. 𝑌𝑌ℎ_99_𝑠𝑝𝑒𝑐 = 0.93 

o 𝑝𝑟𝑜𝑏{𝜖ℎ_𝑟𝑒𝑙_2_𝑛𝑜𝑟𝑚90 ≤ 1} ≥ 𝑟𝑒𝑙_2_0. 𝑌𝑌ℎ_90_𝑠𝑝𝑒𝑐 = 0.80 

o 𝑝𝑟𝑜𝑏{𝜖ℎ_𝑟𝑒𝑙_2_𝑛𝑜𝑟𝑚50 > 1} ≥ 𝑟𝑒𝑙_2_0. 𝑌𝑌ℎ_50_𝑠𝑝𝑒𝑐 = 0.35 

 

 The same operational constraints specified in the above Relative Accuracy Specification example 

are applicable. 

 The above sets of normalized error tolerance requirements {𝑟𝑒𝑙_1_0. 𝑌𝑌ℎ_99_𝑠𝑝𝑒𝑐 , .. ,rel_1_ 

0. 𝑌𝑌ℎ_50_𝑠𝑝𝑒𝑐} and {𝑟𝑒𝑙_2_0. 𝑌𝑌ℎ_99_𝑠𝑝𝑒𝑐 , .. ,rel_2_ 0. 𝑌𝑌ℎ_50_𝑠𝑝𝑒𝑐} correspond to the use of all 

possible independent pairs of error samples in each distance bin.  Note that the number of pairs 

is expected to be somewhat small per distance bin, hence lower values for the above sets 

relative to typical (absolute) predicted accuracy counterparts to approximately account for less 

statistical significance. 

5.4 Predicted Accuracy Requirements and their Validation Sensitivities to 

Sample Size and Predicted Accuracy Fidelity 
This section addresses recommended values for the normalized error tolerance requirements at the 99, 

90, and 50% probability levels in support of the specification and validation of (absolute) predicted 

accuracy requirements (Section 5.2).  Specifically, recommended values for:  

 {𝑌𝑌𝑣_99_𝑠𝑝𝑒𝑐 , 𝑌𝑌𝑣_90_𝑠𝑝𝑒𝑐 , 𝑌𝑌𝑣_50_𝑠𝑝𝑒𝑐 }   and/or  {𝑌𝑌ℎ_99_𝑠𝑝𝑒𝑐 , 𝑌𝑌ℎ_90_𝑠𝑝𝑒𝑐 , 𝑌𝑌ℎ_50_𝑠𝑝𝑒𝑐 }  and/or  

{𝑌𝑌𝑟_99_𝑠𝑝𝑒𝑐 , 𝑌𝑌𝑟_90_𝑠𝑝𝑒𝑐 , 𝑌𝑌𝑟_50_𝑠𝑝𝑒𝑐 } – values specified in % (specify one, two, or three sets of 

values per Equation (5.2.1-1). 

Section 5.4.1 provides an overview on sensitivities, i.e., what affects reasonable values for the above 

{𝑌𝑌ℎ_99_𝑠𝑝𝑒𝑐 , 𝑌𝑌ℎ_90_𝑠𝑝𝑒𝑐 , 𝑌𝑌ℎ_50_𝑠𝑝𝑒𝑐 }, etc.  Section 5.4.2 describes specific recommended values and 

their consequences.  Section 5.4.3 describes complications and recommended values when scalar 

accuracy metrics (e.g. 𝐶𝐸90) are used instead of predicted radials for the normalization of error 

samples.  Section 5.4.4 discusses associated recommended research.    

Examples presented in Sections 5.4.1, 5.4.2, and 5.4.3 correspond to the specification and validation of 

predicted horizontal accuracy (horizontal errors) only for ease of illustration. 

5.4.1 Overview of Sensitivities 

Appropriate values for normalized error tolerance requirements are sensitive to both the desired level 

of predicted accuracy fidelity and the number of samples available to validation (statistical significance).  

The former essentially corresponds to the fidelity of the predictive statistical error model(s) for the 

corresponding NSG systems.  In particular, the fidelity of the resultant predicted error covariance matrix 
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output from MIG-type extractions of target geolocations relative to the true error covariance matrix.  

Although the true error covariance matrix is not known explicitly, actual error samples are available in 

the validation process.  Also, the predicted error covariance matrices vary somewhat over the error 

samples, as each MIG-type extraction corresponds to a slightly different “operating point” within the 

specified operational scenario.  It is expected that the appropriate level of predicted accuracy fidelity is 

NSG system-specific. 

The following tables illustrate the above individual effects assuming horizontal errors and “ideal” and 

independent conditions, i.e. the effects of the number of samples only, and the effects of predicted 

accuracy fidelity only.  Monte-Carlo simulations were performed with i.i.d. error samples and 

corresponding predicted error covariance matrices generated for the specified number of samples per 

realization.  The error samples were generated consistent with the true error covariance matrix for each 

sample. 

First we illustrate the effects of the number of samples or statistical significance on normalized 

horizontal errors; perfect predicted accuracy fidelity is assumed. 

Table 5.4.1-1: Percent of normalized errors <1 (or >1 if 50%-level test) vs. number of samples per 

realization; perfect predicted accuracy fidelity (sigma deviation = 0%), 500 realizations; 90% confidence. 

 

Thus, for example, with 90% confidence and assuming 50 i.i.d. error samples, we expect that at least 

84% of horizontal errors normalized at the 90% probability level will be less than 1.  If we set  

 𝑌𝑌ℎ_90_𝑠𝑝𝑒𝑐  to the values 84, we expect successful validation of the corresponding test with a 

confidence of 90%, i.e., the horizontal normalized error test at the 90% probability level of Equation 

(5.2.2-1) will pass.  Again, this also assumes perfect predicted accuracy fidelity.   

Next we illustrate the effects of predicted accuracy fidelity on normalized horizontal errors.  Many 

samples (1000) are applicable for each realization, thus, statistical significance due to a finite number of 

samples is only a secondary and minor factor.  For this particular illustration, predicted accuracy fidelity 

is expressed using “sigma deviation” or 𝑠𝑖𝑔_𝑑𝑒𝑣, the latter defined as the predicted error covariance 

matrix equal to (1 + 𝑠𝑖𝑔_𝑑𝑒𝑣)2 times the actual error covariance matrix (applicable to each element of 

the covariance matrix).  That is, the predicted error covariance matrix is a scalar multiple of the actual or 

true error covariance matrix.  Thus, a negative-value for sigma deviation (𝑠𝑖𝑔_𝑑𝑒𝑣) corresponds to an 

example of optimistic predicted accuracy and a positive-value corresponds to pessimistic (conservative) 

predicted accuracy.  In particular, a value of sigma devation (expressed as a  percent) of -10% 

corresponds to each error component’s predicted standard deviation (or “sigma”) to be only 

√(1 + 𝑠𝑖𝑔_𝑑𝑒𝑣)2 = (1 + 𝑠𝑖𝑔_𝑑𝑒𝑣) = 0.9  or 90% of the true standard deviation of error.   

  

% norm errors < 1

for norm levels (%): 25 50 100 150 200 250 300 500 1000 >>1000

99 96 96 98 98 98 98 98.3 98.4 98.6 99

90 80 84 86 86.6 87.5 87.6 87.6 88.2 88.7 90

50   (>1) 36 40 43 44.6 46 46 46.3 47.2 48.1 50

number of i.i.d. samples
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Table 5.4.1-2: Percent of normalized errors <1 (or >1 of 50%-level test) vs. predicted accuracy fidelity 

expressed as sigma deviation = +/- xx %; 1000 samples per realization; 500 realizations; 90% confidence 

 

Thus, for example, with 90% confidence and assuming a sigma deviation of -30%, we expect that at least 

88.4% of horizontal errors normalized at the 99% probability level will be less than 1.   

(The difference between Table 5.4.1-2’s sigma deviation = 0% results and Table 5.4.1-1’s corresponding 

1000 i.i.d. sample results are less than or equal to 0.2% and due to different Monte-Carlo runs.) 

5.4.2 Normalized Error Tolerance Values 

The specified values for the normalized error tolerances, e.g. {𝑌𝑌ℎ_99_𝑠𝑝𝑒𝑐 , 𝑌𝑌ℎ_90_𝑠𝑝𝑒𝑐 , 𝑌𝑌ℎ_50_𝑠𝑝𝑒𝑐 } of 

Equation (5.2.1-1) , are “tailored” to both an assumed minimum number of i.i.d. error samples available 

to the corresponding validation process, and to a required “level of fidelity” of the underlying predicted 

statistical error model, i.e., the fidelity of predicted accuracy, or more specifically, the predicted error 

covariance matrix.  This process and resultant specified values are described in this section.  The 

validation of predicted horizontal accuracy is assumed for convenience, followed by tables of baseline 

normalized error tolearance values for the validation of predicted horizontal, vertical, and 3d accuracies, 

respectively. 

As detailed earlier in Section 4.2, the level (category) of predicted accuracy fidelity is defined in terms of 
a sigma deviation range as follows: 

Table 5.4.2-1: Predicted accuracy fidelity categories versus sigma deviation range 

 

(The above table and Equation (5.4.2-1) are applicable to predicted vertical, horizontal, and 3d 

accuracies – the size of the error covariance matrices in the equation are 1x1, 2x2, and 3x3, 

respectively.) 

Correspondingly, and assuming predicted horizontal accuracy, the 2𝑥2 predicted error covariance 

matrix (𝐶𝑋_𝑝𝑟𝑒𝑑) is assumed to satisfy the following relationship with the 2𝑥2 true error covariance 

matrix (𝐶𝑋_𝑡𝑟𝑢𝑒 ): 

(1 + 𝑠𝑖𝑔_𝑑𝑒𝑣𝑙)
2𝐶𝑋_𝑡𝑟𝑢𝑒 ≤ 𝐶𝑋_𝑝𝑟𝑒𝑑 ≤ (1 + 𝑠𝑖𝑔_𝑑𝑒𝑣𝑟)

2𝐶𝑋_𝑡𝑟𝑢𝑒,                   (5.4.2-1)  

% norm errors < 1

for norm levels (%): -50 -30 -10 0 10 30 50

99 66.7 88.4 97 98.6 99.4 99.9 100

90 41.9 65.7 83.2 88.9 92.8 97.4 99.1

50   (>1) 82.6 69.2 55.1 48 41.1 29.2 19.4

sigma deviaton (%)

high medium low

-5 to +5 -15 to +20 -30 to +40

pred acc fidelity category

"sigma deviation" (%) per
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where 𝑠𝑖𝑔_𝑑𝑒𝑣𝑙 and 𝑠𝑖𝑔_𝑑𝑒𝑣𝑟 correspond to the left and right end points, respectively, of the sigma 
deviation range (interval) for the desired category of predicted accuracy fidelity per Table 5.4.2-1.   The 
scalar multiplier (e.g. (1 + 𝑠𝑖𝑔_𝑑𝑒𝑣𝑙)

2) multiplies each component of 𝐶𝑋_𝑡𝑟𝑢𝑒 to yield a corresponding 
scaled true error covariance matrix.  (See Section 5.3.5 of TGD2a (predictive statistics) for the definition 
of 𝐴 ≤ 𝐵 and 𝐴 < 𝐵 for two covariance matrices.) 

The relationship between the error covariance matrices specified in Equation (5.4.2-1) is very general.  
In particular, 𝐶𝑋_𝑝𝑟𝑒𝑑 need not be an explicit scalar multiple of 𝐶𝑋_𝑡𝑟𝑢𝑒, i.e., need not have the same 
shape and/or orientation.  However, it is “bounded” by scalar multiples of  𝐶𝑋_𝑡𝑟𝑢𝑒.  This is illustrated in 
Figure 5.4.2-1 below corresponding to medium predicted accuracy fidelity, and a repeat of Figure 4.2-2 
for convenience.  (See Section 5.3.4 of TGD 2a (predictive statistics) for the equivalence of error 
covariance matrices and corresponding probability ellipses.) 

 

Figure 5.4.2-1: The predicted error covariance matrix 𝐶𝑋_𝑝𝑟𝑒𝑑 (red probability ellipse) is bounded by 
scalar multiples of 𝐶𝑋_𝑡𝑟𝑢𝑒 (blue dot-dash and blue dash-dash probability ellipses) 

Also, as seen in the above figure for an arbitrary sample of horizontal error (green arrow), the predicted 

radial (red triangle) computed using 𝐶𝑋_𝑝𝑟𝑒𝑑 is always bounded by radials (gold dots) corresponding to 

the scaled true error covariance matrices (1 − 0.15)2𝐶𝑋_𝑡𝑟𝑢𝑒 and (1 + 0.20)2𝐶𝑋_𝑡𝑟𝑢𝑒.  Of course, the 

actual values of these bounds (gold dots) are unknown as 𝐶𝑋_𝑡𝑟𝑢𝑒 is unknown. 

The above bounds “enable” the use of normalized error tolerances for the validation of predicted 

horizontal accuracy.  The bounds affect the differences in the sample-based probability distribution of 

normalized errors (sample radial error divided by predicted radial) relative to the theoretically correct 

probability distribution of normalized errors (sample radial error divided by true radial, assuming a very 

large number of samples).   The normalized error tolerances and corresponding validation tests place 

limits on the differences between these two probability distributions at three different levels of 

probability. 

 

Hor error: 

True ellipse: 

True radial: 

+20% true ellipse: 

-15% true ellipse: 

+20/-15% true radials: 

Pred ellipse: 

Pred radial: 
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Although not explicitly shown in Figure 5.4.2-1, the predicted radial is also equal to (not simply bounded 

by) a radial corresponding to a scaled true error covariance matrix (1 + 𝑠𝑖𝑔_𝑑𝑒𝑣)2𝐶𝑋_𝑡𝑟𝑢𝑒, where 

𝑠𝑖𝑔_𝑑𝑒𝑣𝑙 ≤ 𝑠𝑖𝑔_𝑑𝑒𝑣 ≤ 𝑠𝑖𝑔_𝑑𝑒𝑣𝑟, i.e., 𝑠𝑖𝑔_𝑑𝑒𝑣 is within the sigma deviation range for medium 

predicted accuracy per Table 5.4.2-1.   

(The above characteristics are independent of the specific probability level 𝑋𝑋% that is common to the 

probability ellipses in the figure and also applicable to the predicted radial 𝜖ℎ_𝑝𝑟𝑒𝑑_𝑟𝑎𝑑𝑖𝑎𝑙𝑋𝑋 computed 

via Equation (5.2.1-4).)     

Figure 5.4.2-1 also assumed that Equation (5.4.2-1) was satisfied, and as such validation of medium 

predicted accuracy should pass as will be detailed later.   If instead, (1 + 𝑠𝑖𝑔_𝑑𝑒𝑣𝑟)
2𝐶𝑋_𝑡𝑟𝑢𝑒 <

𝐶𝑋_𝑝𝑟𝑒𝑑, the red ellipse would completely encompass the dot-dash blue ellipse and validation should 

fail.  Or, alternatively, if 𝐶𝑋𝑝𝑟𝑒𝑑 < (1 + 𝑠𝑖𝑔_𝑑𝑒𝑣𝑙)
2𝐶𝑋_𝑡𝑟𝑢𝑒, the red ellipse would be completely 

encompassed by the dot-dot blue ellipse and validation should fail as well.  See Appendix D.3 for further 

discussion and examples. 

Note: the sigma deviation range of -30% to +40% for low predicted accuracy fidelity as defined in Table 

4.2-1 is purposely somewhat non-symmetric and favors conservative error propagation, i.e., assumes 

that the underling error models for extraction will be somewhat conservative in order to compensate 

for the lack of error modeling “information”.  A similar non-symmetry is  also true for medium predicted 

accuracy fidelity. 

Normalized error tolerance values vs. predicted accuracy fidelity 

The degree of maturity, level of system calibration, and the variability of the operational range of an 

NSG system affects the specified level of fidelity (Table 5.4.2-1) which is implicit in the specified values 

{𝑌𝑌ℎ_99_𝑠𝑝𝑒𝑐, 𝑌𝑌ℎ_90_𝑠𝑝𝑒𝑐 , 𝑌𝑌ℎ_50_𝑠𝑝𝑒𝑐 } for flexibility.  These specified values are detailed below: 

The following tables present baseline normalized error tolerance requirements for the three probability 

levels (99, 90, and 50%) as a function of both the number of samples available for the tests (statistical 

significance), and the applicable level of predicted accuracy fidelity.  The tables’ tolerance values reflect 

the combined (and inter-related) effects of sample size and predicted accuracy fidelity level on the 

passing of all three normalized error tests simultaneously, i.e., those tests corresponding to 99%, 90%, 

and 50% probability levels.  Tables 5.4.2-2 through 5.4.2-4 below correspond to normalized horizontal, 

vertical, and 3d errors, respectively.  Appendix D details table generation and includes MATLAB pseudo-

code. 
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Table 5.4.2-2: Normalized horizontal error tolerance requirements vs. number of i.i.d. samples; 

categorized by desired predicted accuracy fidelity 

 

Table 5.4.2-3:Normalized vertical error tolerance requirements vs. number of i.i.d. samples; categorized 

by specified predicted accuracy fidelity (slightly larger than for horizontal normalized error counterparts) 

 

Table 5.4.2-4: Normalized 3d error tolerance requirements vs. number of i.i.d. samples; categorized by 

specified predicted accuracy fidelity (slightly smaller than for horizontal normalized error counterparts) 

 

normalized test level 400 samples 100 samples 50  samples  25  samples pred acc fidelity

99 97 95 93 90

90 85 83 78 76 high

50 44 39 38 34

99 95 90 88 84

90 78 76 72 68 medium

50 36 30 30 24

99 85 84 82 76

90 65 64 60 54 low

50 25 24 18 14

normalized test level 400 samples 100 samples 50  samples  25  samples pred acc fidelity

99 97 95 94 90

90 86 83 80 76 high

50 44 40 38 34

99 96 91 90 86

90 80 78 74 70 medium

50 40 34 32 30

99 88 86 84 80

90 70 66 64 62 low

50 30 28 26 22

normalized test level 400 samples 100 samples 50  samples  25  samples pred acc fidelity

99 96 94 93 87

90 84 82 78 73 high

50 42 37 37 31

99 89 85 84 82

90 72 71 69 66 medium

50 32 27 27 22

99 80 79 79 72

90 59 57 57 50 low

50 19 15 15 10
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The tolerances of the above tables were derived such that the probability of success was at least 90% 

within the appropriate “sigma deviation” range, and dropped-off as soon as possible outside of this 

range as illustrated by the following plots.   

The effect of normalized error test tolerance values (categorized by predicted accuracy fidelity) on 

validation 

The following plots (Figures 5.4.2-2 through 5.4.2-13) correspond to normalized horizontal error tests 

based on the use of the normalized error tolerance requirements contained in Table 5.4.2-2.  They 

graphically illustrate the probability of success (confidence) of passing all three probability-level tests 

(Equation (5.2.2-1)) versus sigma deviation, and hence, passing validation.   

The probability of success is reflected as the % of realizations, each containing the specified number of 

i.i.d. samples, which pass all three probability-level tests.  Five hundred realizations were performed per 

sigma deviation value via a Monte-Carlo simulation as detailed in Appendix D.  Also, the horizontal 

magenta-colored dotted lines in these plots correspond to confidence at the 95%, 90%, and 50% levels 

and are there for convenient reference; they are not directly related to the normalized error test 

tolerance probability-levels of 99%, 90%, and 50%.    

Figure 5.4.2-2 is presented first and corresponds to high predicted accuracy fidelity and 400 i.i.d. 

samples.  It is followed by interpretation of plot results, which generalize to the plots that follow that 

correspond to different combinations of predicted accuracy fidelity and number of samples. 

 

Figure 5.4.2-2: Probability (confidence) of passing all three normalized error tests; high fidelity, 400 

samples 
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The plot’s x-axis is titled “sigma % of pred cov relative to the actual cov” and corresponds to sigma 

deviation or 𝑠𝑖𝑔_𝑑𝑒𝑣 (%).  The corresponding value on the y-axis is the probability of success 

(confidence) in passing validation if 𝐶𝑋_𝑝𝑟𝑒𝑑 = (1 + 𝑠𝑖𝑔_𝑑𝑒𝑣)2𝐶𝑋_𝑡𝑟𝑢𝑒.  The overall probability of 

validation success is the minimum y-value taken over the sigma deviation range (𝑠𝑖𝑔_𝑑𝑒𝑣𝑙 , 𝑠𝑖𝑔_𝑑𝑒𝑣𝑟) =

(−0.05,0.05) on the x-axis, approximately equal to 0.92 in the above figure, and applicable to any 

predicted error covariance matrix that satisfies (1 − 0.05)2𝐶𝑋_𝑡𝑟𝑢𝑒 ≤ 𝐶𝑋_𝑝𝑟𝑒𝑑 ≤ (1 + 0.05)2𝐶𝑋_𝑡𝑟𝑢𝑒.     

(As explained earlier in the discussion regarding Figure 5.4.2-1, the relationship (1 − 0.05)2𝐶𝑋_𝑡𝑟𝑢𝑒 ≤

𝐶𝑋_𝑝𝑟𝑒𝑑 ≤ (1 + 0.05)2𝐶𝑋_𝑡𝑟𝑢𝑒 also places bounds on the value of the predicted radial relative to the 

true (actual) radial, or correspondingly, bounds on the error in the predicted radial’s computed value 

which directly affects the validation tests via Equations (5.2.1-1) and  (5.2.1-4).) 

Type I validation errors correspond to failing at least one of the three probability-level tests when all 

should have passed within the corresponding sigma deviation range.  In the above plot, the probability 

of a Type I error is less than 1 - 0.92 = 0.08 or 8%.  Type II errors correspond to passing all three 

probability-level tests when at least one should have failed.  In the above plot, the probability of a Type 

II error is less than 0.05 or 5% for any sigma deviation outside of the interval (-0.10, 0.10), and applicable 

to any predicted error covariance matrix that satisifies either (1 + 0.10)2𝐶𝑋_𝑡𝑟𝑢𝑒 < 𝐶𝑋_𝑝𝑟𝑒𝑑 or 

𝐶𝑋𝑝𝑟𝑒𝑑 < (1 − 0.10)2𝐶𝑋_𝑡𝑟𝑢𝑒. 

The results of Figure 5.4.2-2 are as desired and dramatic per the fast “roll-off” of confidence outside of 

the desired sigma deviation range for high predicted accuracy fidelity.  This is primarily due to a large 

number of samples (400).  Other figures below show less dramatic roll-off with a lessor number of 

samples, as expected.  In all cases (figures) the three probability-level normalized error tests work “in 

concert” to limit high confidence validation to within the desired sigma deviation range per the desired 

level of predicted accuracy fidelity (see Section 5.5 for a related discussion). 
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Figure 5.4.2-3: Probability of passing all three normalized error tests; high fidelity, 100 samples 

 

 

Figure 5.4.2-4: Probability of passing all three normalized error tests; high fidelity, 50 samples 
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Figure 5.4.2-5: Probability of passing all three normalized error tests; high fidelity, 25 samples 

 

  

Figure 5.4.2-6: Probability of passing all three normalized error tests; medium fidelity, 400 samples 
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Figure 5.4.2-7: Probability of passing all three normalized error tests; medium fidelity, 100 samples 

 

 

Figure 5.4.2-8: Probability of passing all three normalized error tests; medium fidelity, 50 samples 
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Figure 5.4.2-9: Probability of passing all three normalized error tests; medium fidelity, 25 samples 

 

 

Figure 5.4.2-10: Probability of passing all three normalized error tests; low fidelity, 400 samples 
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Figure 5.4.2-11: Probability of passing all three normalized error tests; low fidelity, 100 samples 

 

 

Figure 5.4.2-12: Probability of passing all three normalized error tests; low fidelity, 50 samples 
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Figure 5.4.2-13: Probability of passing all three normalized error tests; low fidelity, 25 samples 

 

Results of Tables 5.4.2-2 – 5.4.2-4 can also be interpolated, if need be, by both the applicable number of 

samples and by “in-between” categories of predicted accuracy fidelity.  Tables customized to different 

levels of predicted accuracy fidelity and/or number of samples can also be generated per the techniques 

described in Appendix D.  

5.4.3 Normalized Error Tolerance Values when Scalar Accuracy Metrics are used for 

Normalization 

Normalization of error samples by the corresponding predicted radial (Equation (5.2.1-2)) is preferred 

over normalization using the corresponding scalar accuracy metric (Equation (5.2.1-5)).  However, the 

latter is not incorrect assuming that the scalar accuracy metric is computed correctly from the 

corresponding predicted error covariance matrix.  This computation (see TGD 2a) automatically takes 

into account a significant contributing factor:  “sqrt_eigen_ratio”, the square root of the ratio of the 

minimum eigenvalue to the maximum eigenvalue contained in the predicted error covariance matrix.  

For horizontal errors, this corresponds to the ratio of the error ellipse’s semi-minor axis to semi-major 

axis.  Figure 5.4.3-1 illustrates this ratio relative to an error ellipse and its corresponding CE counterpart: 
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Figure 5.4.3-1: 90% Error Ellipse and Corresponding CE90 

The effect of this ratio on the three probability-level tests using scalar accuracy metrics is detailed in 

Appendix E.  What we are interested in are the appropriate normalized error tolerance requirements – 

do they differ from those corresponding to normalization of errors via predicted radials, assuming the 

same number of samples and desired predicted accuracy fidelity?   

The “good news” is as follows: 

 For vertical errors, the corresponding normalized error tolerance requirements of Table 5.4.2-3 

are still equally valid. 

 For horizontal errors, the results of the three probability-level tests are identical to those using 

predicted radials when sigma-deviation is 0; however, there are different sensitivities regarding 

non-zero sigma deviations.  If sqrt_eigen_ratio (“ratio”) is 0.8 or greater, sensitivities are 

virtually identical, thus Table 5.4.2-2 can still be used.  If ratio is 0.5 or greater, sensitivities are 

approximately the same, thus Table 5.4.2-2 can still be used as well with some caution (larger 

“roll-off” or Type II errors, as illustrated in plots below). 

 For 3d errors, the conclusions for horizontal errors are approximately applicable as well.  

However, it is unusual to perform normalization of 3d errors using scalar accuracy metrics 

(SEXX); hence, this is not be pursued in further detail. 

The “bad news” is as follows: 

 For ratios smaller than approximately 0.5, custom tables containing normalized error tolerance 

requirements for normalization of horizontal errors using scalar accuracy metrics are required, 

and are further parameterized by the value of “ratio”.  This can be done using the methods 

presented in Appendix D.  However, this becomes complicated and further requires not only 

knowledge of “ratio” via the assumed availability of the predicted error covariance matrix, but 
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must assume that this ratio doesn’t change significantly over the samples/operational 

constraints.  (Results, however, are invariant to a rotation of the error ellipse or ellipsoid about 

the ENU axis.) 

 The above is another reason why normalization of errors using predicted radials is preferred. 

Further note that if only CE90 is available to the validation process (the predicted error covariance 

matrix is not): 

 CE99 and CE50 can be estimated from CE90 using an assumed ratio of 1: 

o 𝐶𝐸99 = (
3.035

2.146
)𝐶𝐸90, 𝐶𝐸50 = (

1.177

2.146
)𝐶𝐸90 

 Of course, per the earlier discussion, results will only be acceptable if it is known a priori that the 

actual ratio is greater or equal to 0.8. 

The effects of the above issues and conclusions are illustrated in the following plots for normalized 

horizontal error assuming 100 i.i.d. error samples, similar to the earlier plots Figure 5.4.2-1 through 

5.4.2-13.  A blue curve corresponds to the use of predicted radials for normalization (illustrated in the 

earlier plots), a green line to the use of correctly computed CE99, CE90, and CE50, and a red line to the 

use of a correctly computed CE90, but a CE99 and a CE50 computed from CE90 assuming a specified 

ratio value.   

 

Figure 5.4.3-1: 100 samples and high fidelity; actual ratio = 1 and assumed ratio =1 
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Figure 5.4.3-2: 100 samples and high fidelity; actual ratio = 0.8 and assumed ratio =1 

 

 

Figure 5.4.3-3: 100 samples and high fidelity; actual ratio = 0.5 and assumed ratio =1 
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Figure 5.4.3-4: 100 samples and medium fidelity; actual ratio = 1 and assumed ratio =1 

 

 

Figure 5.4.3-5: 100 samples and medium fidelity; actual ratio = 0.8 and assumed ratio =1 
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Figure 5.4.3-6: 100 samples and medium fidelity; actual ratio = 0.5 and assumed ratio =1 

Thus, the applicable table for normalized error tolerance values for horizontal errors normalized using 

scalar accuracy metrics (CEXX) corresponds to Table 5.4.2-2 applicable to predicted radials.  However, as 

discussed earlier, this also assumes that ratio (sqrt_eigen_ratio) is greater than or equal to 

approximately 0.8, and possibly 0.5 with some extra “roll off”.  This also assumes that CE99, CE90, and 

CE50 are computed correctly.  If CE99 and CE50 must be derived from CE90 from scale factors based on 

an assumed ratio of 1, the (actual) ratio must be approximately 0.8 or greater for reasonable results.  

(Plots 5.4.3-1 through 5.4.3-6 above were generated using “pseudo-code” documented in Appendix E.) 

In summary, the use of predicted scalar metrics is not part of the baseline approach for the validation of 

predicted accuracy.  However, it can be used if need be.  For example, if the predicted error covariance 

matrix is unavailable to the validation process but corresponding predicted scalar accuracy metrics are 

available instead (assumed generated correctly from the predicted error covariance matrix by some 

other application/process).  This is also predicated on a priori knowledge that ratio (sqrt_eigen_ratio) is 

not too small as discussed earlier. 

5.4.4 Recommended Future Research 

This section discusses recommended future research corresponding to the specification and validation 

of predicted accuracy: 

It is recommended that both: (1) the definitions of low, medium, and high predicted accuracy fidelity as 

a function of sigma deviation range, and (2) the corresponding normalized error tolerance values (e.g., 
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{𝑌𝑌ℎ_99_𝑠𝑝𝑒𝑐 , 𝑌𝑌ℎ_90_𝑠𝑝𝑒𝑐 , 𝑌𝑌ℎ_50_𝑠𝑝𝑒𝑐 }) be adjusted or “fine-tuned” based on future research.  The 

former based on additional input regarding applicable “classes” of NSG geolocation system mission 

requirements regarding predicted accuracy fidelity, and the latter based on both formal and informal 

predicted accuracy validation results using real data, as well as extension of the simulations discussed in 

Appendix D.. 

In addition, it is recommend that future research also address the assumption that underlying error-

components are mean-zero multi-variate Gaussian.  This assumption directly affects the computation of 

the normalized errors, Equations 5.2.1-2 through 5.2.1-4, and Equation 5.2.1-3 in particular, as well as 

the Monte-Carlo simulation results used to generate the normalized error tolerance values, e.g. 

{𝑌𝑌ℎ_99_𝑠𝑝𝑒𝑐 , 𝑌𝑌ℎ_90_𝑠𝑝𝑒𝑐 , 𝑌𝑌ℎ_50_𝑠𝑝𝑒𝑐 }.  In particular, how robust are predicted accuracy validation 

results regarding this assumption, and possible modifications of the validation algorithm/parameters if 

given a priori  information of a different (possibly empirical) distribution?   

It is hypothesized that multi-variate Gaussian distributions with non-zero means of reasonable 

magnitude are not a problem – the current approach to the specification and validation of predicted 

accuracy should be reasonably robust if this is the case.  This follows from considering the predicted 

error covariance as an approximate true error covariance matrix + 𝜖𝑋̅̅̅̅  𝜖𝑋̅̅̅̅ 𝑇, where 𝜖𝑋̅̅̅̅  is the true mean-

value of geolocation error.  The use of this predicited error covariance matrix along with an assumed 

mean-value of zero fits well within the sigma deviation paradigm.  Preliminary verification has been 

performed by simulation. 

It is hypothesized that the suitability of the multi-variate Gaussian distribution assumption is dependent 

on the absence of more extreme sensor-to-geolocation geometries and sensor orientations where non-

trivial non-linear effects may occur.  In addition, the presence of higher probabilities for more extreme 

values of error are of concern, as well as the applicability of significantly different probability 

distributions, such as a “Mixture of Gaussians” distribution:  𝑝𝑑𝑓(𝜖𝑋) = ∑ 𝑤𝑖𝑝𝑑𝑓𝐺(𝜖𝑋; 𝜇𝑖 , Σ𝑖)
𝑁
𝑖=1 , where  

∑ 𝑤𝑖
𝑁
𝑖=1 = 1.  The “Mixture of Gaussians” is still a valid multi-variate probability distribution but can 

have multiple modes, with each mode being a Gaussian with probability density function 

𝑝𝑑𝑓𝐺(𝜖𝑋; 𝜇𝑖 , Σ𝑖).  The whole pdf itself is not Gaussian even though the individual components are. 

Despite these potential weaknesses, it is also hypothesized that the major features of the current 

approach to the specification and validation of predicted accuracy can be successfully retained as they 

were designed with robustness in mind: (1) the use of three normalized error probability test levels and 

corresponding one-sided tests (two below, one above), and (2) the use of predicted accuracy fidelity 

categories with corresponding sigma deviation scaling of error covariance matrices.  This does not rule 

out that some changes to the current approach and related parameter values will be needed. 

It is also noted that non-Gaussian probability distributions of error may still be represented 

(approximated) by a MIG-type estimator’s a posteriori covariance matrix (aka predicted error covariance 

matrix) for practicality.  Furthermore, the most general  MIG-type estimator is a Best Linear Unbiased 

Estimator (minimum variance estimator) – it need not assume a Gaussian distribution of errors. 
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5.5 Relationships between Predicted Accuracy Validation Tests, Plotting, and 

the Chi-Square Probability Distribution 
 

The three probability-level normalized error tests (Equation (5.2.2-1)) for an error of interest (vertical, 

horizontal, or 3d) are convenient, practical, and plot-friendly tests for the validation of predicted 

accuracy.  They are one-sided tests that work in concert together to ensure reasonable normalized 

errors, i.e., reliable predicted accuracies. 

Figure 5.5-1 presents a conceptual graphical depiction of the tests assuming 3d errors.  (See Figure 

5.2.3.2-4 for an actual depiction and Figures 5.2.3.2-1 through 5.2.3.2-3 for single-test counterparts.)  

The 99% probability normalized error test is equivalent to the percentage of radial error samples below 

the blue line that has the largest slope in Figure 5.5-1.  This percentage must be greater than or equal to 

the specified tolerance 𝑌𝑌𝑟_99_𝑠𝑝𝑒𝑐 which has a typical value of 95%.  This test ensures that few if any 

normalized error samples are excessively large, such as those corresponding to the red circles of 3d 

radial error samples in Figure 5.5-1.  The 90% probability normalized error test is equivalent to the 

percentage of radial error samples below the blue line that has the slope of 1.  This percentage must be 

greater than or equal to the specified tolerance 𝑌𝑌𝑟_90_𝑠𝑝𝑒𝑐  which has a typical value of 83%.  This test 

ensures that a reasonable number of radial error samples are smaller than their predicted 90% probable 

magnitudes, and are represented symbolically by a significant subset of the blue circles in Figure 5.5-1.  

The 50% probability normalized error test is equivalent to the percentage of radial error samples above 

(not below) the blue line with the smallest slope.  This percentage must be greater than or equal to the 

specified tolerance 𝑌𝑌𝑟_50_𝑠𝑝𝑒𝑐 which has a typical value of 39%.  This test ensures that predicted radials 

are not excessively large, such as the dark red circles corresponding to 3d radial error samples in Figure 

5.5-1.  This test “balances” the two other tests.   

 

Figure 5.5-1: Conceptual graphic of the three probability-level normalized error tests for validation of 

predicted accuracy 
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A similar concept is applicable to errors normalized by scalar accuracy metrics (e.g., SEXX for 3d errors or 

CEXX for horizontal errors); however, as discussed earlier, a combined graphic corresponding to all three 

probability-levels is not possible, and three separate graphics must be generated. 

Also, keep in mind that the specified values for tolerances {𝑌𝑌𝑟_99_𝑠𝑝𝑒𝑐 , 𝑌𝑌𝑟_90_𝑠𝑝𝑒𝑐 , 𝑌𝑌𝑟_50_𝑠𝑝𝑒𝑐 } are 

selected based on the expected number of samples available to validation as well as the desired level of 

predicted accuracy fidelity as discussed earlier in Section 5.4.2.  That is, they are intended to be practical 

values, not simply selected based on theory corresponding to an unlimited number of samples and 

assumed perfect (probabilistic-based) predicted accuracy fidelity.  Another interesting point is that the 

normalized (radial) errors squared, assuming a multi-variate, mean-zero, Gaussian probability 

distribution for the underlying error vector 𝜖𝑋 = [𝜖𝑥 𝜖𝑦 𝜖𝑧]𝑇, corresponds to a Chi-square 

probability distribution with 𝑛 degrees of freedom (dof), where 𝑛 is the vector dimension of 𝜖𝑋, e.g., 

𝑛 = 2 if horizontal normalized errors are of interest.  This is discussed in [7], with Figure 5.5-2 below an 

excerpt.  Reference [2] also discusses the Chi-square distribution in general.  The figure actually presents 

the Chi (not Chi-squared) probability distribution for normalized errors since it is a function of 

normalized error magnitude (distance)  𝑑 (meters) instead of normalized error squared-magnitude 𝑑2 

(𝑑2 not directly related to 𝑑𝑋𝑋
2  presented earlier in this document). 

 

Figure 5.5-2:  Chi probability distribution function (2 degrees of freedom) 

The blue (middle) curve in the above figure corresponds to the theoretical probability distribution 

assuming an unlimited number of samples and perfect predicted accuracy fidelity.  The surrounding 

curves correspond to +/- 7.5% (middle curves) and +/- 15% (outer curves) sigma deviations.  Their 

intersection with the horizontal 99%, 90%, and 50% probability levels and their perpendicular lines 

correspond to test tolerances at the three probability-levels for practicality – see [7] for more details.  
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Also, although not shown, sample-based Chi probability distributions are also easily generated by 

ordering i.i.d. samples of the corresponding normalized error.  Of course, they are much less smooth 

than their theoretical counterparts as a function of the number of samples – the more the samples the 

smoother the function. 

(As an interesting aside and as discussed in TGD 2b, the radial errors themselves, 𝜖𝑣, 𝜖ℎ, 𝑎𝑛𝑑 𝜖𝑟, have 

folded-Normal, Rayleigh, and Maxwell probability distributions respectively, again assuming a multi-

variate, mean-zero, Gaussian distribution for the underlying error components contained in vector 𝜖𝑋, 

including the additional constraint that the corresponding a priori error covariance matrix is a diagonal 

matrix with equal-valued diagonal components or component variances.) 

 

5.6 Processing Multiple Error Samples from the Same Set of Sensor Data: 

Correlated Error Samples 
This document has assumed the processing of i.i.d. error samples for both the validation of accuracy and 

the validation of predicted accuracy.  However, it is not uncommon in practice that for each i.i.d. error 

sample, a sub-collection of correlated error samples is also available.  For example, there could be 100 

i.i.d. error samples, each associated with another 5 error samples that are positively correlated with the 

original error sample, and of course, with themselves.  More specifically, for example, a geolocation 

system with extraction based on the use of one (mono) or a stereo pair of images, a total of 6 

geolocations could be extracted per image or stereo pair of images (on average) with corresponding 

ground truth available in order to compute error samples.  These 6 geolocations are correlated since 

they are based on the same data (images and image support data).  (They are also assumed 

uncorrelated with all other groups of 6 error samples since the corresponding imagery was assumed 

imaged over different satellite passes.)  What to do, if anything, with the extra 500 error samples that 

are available in this example?   

There are three basic approaches, each assumed, as a minimum, to use the additional error samples in 

support of a reasonableness check for the value of the selected original i.i.d. error sample; if deemed an 

outlier, replaced by one of the correlated error samples.  In the above example, an outlier typically 

occurs due to either mis-measurement of the target’s location in the image(s), possibly due to mis-

identification of the ground truth point’s location in the image(s), or possibly due to a faulty ground 

truth point location (or coordinate values(s)) itself.   

Prior to describing these three approaches, Subsection 5.6.1 first illustrates the importance of using i.i.d. 

error samples in general for the validation of accuracy per the baseline method documented in Section 

4.1/5.1.   I.i.d. error samples are also important for the validation of predicted accuracy as well, but are 

not illustrated explicitly in this subsection. 

Subsections 5.6.2 – 5.6.4 then go on to provide a description of each of the three basic approaches to 

deal with sub-collections of correlated samples.  The first approach, “i.i.d. error samples only”, is the 

preferred approach and considered the baseline for sub-collections of correlated samples.  These 
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subsections exclude a description of possible reasonableness checks, as many different approaches are 

both applicable and readily available.  For example, and for a reasonable number of sub-collections, 

such a check could simply entail plotting all of the error samples in a correlated sub-collection and look 

for those that are too big and inconsistent with the others.   

Note that various pseudo-code in support of Subsections 5.6.1-5.6.4 are documented in Appendix G. 

5.6.1 The importance of i.i.d. error samples in general 

This subsection illustrates the importance of using i.i.d. error samples in general, and specifically, the 

effects of both i.i.d. samples and non-i.i.d. (correlated) samples on validation of accuracy using the 

baseline validation procedure of Subsection 4.1/5.1.   

60 samples of correlated horizontal errors were simulated  (including zero correlation or i.i.d. samples), 

with both the best estimate and the lub (90% confidence) of the 90th percentile of horizontal radial error 

computed per the baseline algorithm of Subsections 4.1/5.1.  60 samples were computed for each of 

1000 independent realizations.  There were no correlated sub-collections, or alternatively and 

equivalently, there was only one correlated sub-collection containing 60 correlated samples for a given 

realization.  Underlying x and y error components were simulated based on a multi-variate Gaussian 

distribution and consistent with a true value of the 90th percentile of horizontal radial error 𝜖ℎ90 equal 

to 2.14 m.  The actual generation of 60 2d correlated  error samples was based on the method 

presented in TGD 2e (Monte Carlo simulation) and summarized as follows for realization # 𝑚: 

𝑋𝑚 = 𝐶𝑋
1/2

𝑟,            5.6.1-1 

where 𝑋𝑚 is a 120𝑥1 vector of 60 2d correlated error samples, 𝑟 is a 120𝑥1 vector of independent 

realizations of a Gaussian random variable with mean-value of zero and variance of 1, and 𝐶𝑋
1/2

 is the 

principal matrix square-root of the 120𝑥120 joint covariance matrix 𝐶𝑋, with common 2𝑥2 diagonal 

blocks equal to 𝑐𝑜𝑣 consistent with the (simulation data base parameter) value of 𝜖ℎ90, and with 

common 2𝑥2 off-diagonal blocks equal to 𝑐𝑟𝑜𝑠𝑠𝑐𝑜𝑣 = 𝜌 ∙ 𝑐𝑜𝑣, where 𝜌 is the specified common 

correlation (coefficient) between each pair of 2d error samples and which multiplies each element of 

the 2 × 2 matrix 𝑐𝑜𝑣: 

𝐶𝑋 = [

𝑐𝑜𝑣 𝜌 ∙ 𝑐𝑜𝑣
𝜌 ∙ 𝑐𝑜𝑣 𝑐𝑜𝑣

… 𝜌 ∙ 𝑐𝑜𝑣
… 𝜌 ∙ 𝑐𝑜𝑣

… …
𝜌 ∙ 𝑐𝑜𝑣 𝜌 ∙ 𝑐𝑜𝑣

… …
… 𝑐𝑜𝑣

].        5.6.1-2 

Histogram results were then generated and plotted with the value of 𝜖ℎ90 the vertical red line, and 

approximately 90% of lub’s larger than the magenta line (to the right of this line).  The magenta line 

must be (slightly) greater than the red line for successful validation at the 90% probability level, i.e., 

slightly more than 90% of the lub’s should be greater than the red line (𝜖ℎ90).   

The following presents results for three separate sub-cases, where common correlation between each 

of the 60 samples was equal to either 0 (i.i.d. samples), 50, or 90% correlation (𝜌 = 0, 0.50, 0.90).  Each 
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sub-case first presents a plot of the histogram containing 1000 best estimates of 𝜖ℎ90, followed by a plot 

of the histogram containing 1000 different lub’s for 𝜖ℎ90. 

 

Figure 5.6.2-1: Histogram of best estimate of eh_90: 0 correlation between 60 (i.i.d.) samples per each 

of 1000 independent realizations; red line corresponds to true value of eh_90; results successful as 

expected – best estimates close to true value 

 

Figure 5.6.2-2: Histogram of lub of eh_90: 0 correlation between 60 (i.i.d.) samples per each of 1000 

independent realizations; red line corresponds to true value of eh_90; 90% of lubs greater than magenta 

line; results successful as expected as approximately 92% of lubs slightly greater than red line 
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Figure 5.6.2-3: Histogram of best estimate of eh_90: 50% correlation between 60 samples per each of 

1000 independent realizations; red line corresponds to true value of eh_90; results starting to degrade – 

too large of spread of best estimates around true value 

 

Figure 5.6.2-4: Histogram of lub of eh_90: 50% correlation between 60 samples per each of 1000 

independent realizations; red line corresponds to true value of eh_90; 90% of lubs greater than magenta 

line; results poor as approximately only 60% of lubs greater than red line 
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Figure 5.6.2-5: Histogram of best estimate of eh_90: 90% correlation between 60 samples per each of 

1000 independent realizations; red line corresponds to true value of eh_90; results very poor – very 

wide spread of best estimates around true value 

 

Figure 5.6.2-6: Histogram of lub of eh_90: 90% correlation between 60 samples per each of 1000 

independent realizations; red line corresponds to true value of eh_90; 90% of lubs greater than magenta 

line; results very poor as approximately only 25% of lubs greater than red line 

The following results correspond to the same general experiment as above except that there are 10 

correlated sub-collections, each with 6 correlated samples, and each sub-collection independent 
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improved.  For 50% correlation within a correlated sub-collection, results are close to the desired results 

corresponding to i.i.d. samples (Figure 5.6.2-1 and 5.6.2-2).  For 90% correlation within a correlated sub-

collection, results are still unacceptable (poor) but better than the earlier results (Figures 5.26.2-5 and 

5.6.2-6)  which correspond to all 60 samples correlated 90%. 

 
Figure 5.6.2-7: Histogram of best estimate of eh_90: 50% correlation between 6 samples per correlated 

sub-collection for each of 1000 independent realizations; red line corresponds to true value of eh_90; 

results acceptable 

 

Figure 5.6.2-8: Histogram of lub of eh_90: 50% correlation between 6 samples per each of 10 correlated 

sub-collections for 1000 independent realizations; red line corresponds to true value of eh_90; 90% of 

lubs greater than magenta line; results borderline acceptable as approximately 86 % of lubs greater than 

red line 
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Figure 5.6.2-9: Histogram of best estimate of eh_90: 90% correlation between 6 samples per correlated 

sub-collection for each of 1000 independent realizations; red line corresponds to true value of eh_90; 

results poor 

 

Figure 5.6.2-10: Histogram of lub of eh_90: 90% correlation between 6 samples per each of 10 

correlated sub-collections for 1000 independent realizations; red line corresponds to true value of 

eh_90; 90% of lubs greater than magenta line; results poor as approximately only 60 % of lubs greater 

than red line 

In summary, i.i.d. or nearly i.i.d. error samples are required for proper validation of accuracy.  The above 

figures provided quantitative results for varying levels of correlation based on the baseline validation 

procedure of Sections 4.1/5.1.   
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For a given level of correlation (50% or 90%), the use of correlated sub-groups did improve the poor to 

very poor validation results as they decreased overall “average” correlation.  However, they were still 

unacceptable for 90% correlation within a sub-collection.  (Relative improvements may differ with more 

sub-collections.)  And as a reminder, the baseline validation procedure was used in all the above 

experiments: i.i.d. error samples were assumed and no a priori information was utilized regarding error 

samples grouped into correlated sub-collections. 

The following now goes on to address three different approaches for alternative (non-baseline) 

processing when correlated sub-collections are known to be available, each sub-collection containing 

correlated error samples.  Validation of both accuracy and predicted accuracy requirements are 

addressed. 

5.6.2 i.i.d. Error Samples Only Approach 

This approach does not use the extra error samples available in each correlated sub-collection.  It 

performs normal (baseline) validation processing using one i.i.d. error sample from each and all 

correlated sub-collections.  Assuming a reasonable number of corresponding  i.i.d. error samples, this is 

certainly a reasonable approach and theoretically valid with no additional assumptions and 

approximations necessary for both accuracy and predicted accuracy validation.  However, it is 

recommended that each i.i.d. error sample is either selected randomly from its correlated sub-collection 

of error samples, or by a deterministic algorithm designed to ensure that the entire “collection solution-

space” is sampled over the i.i.d. error samples as much as possible.  For example, for a geolocation 

system based on stereo-pairs of same pass images, i.i.d. samples are selected within different quadrants 

(or finer subdivision) of the ground footprints of the various independent stereo pairs. 

No further examples or details are necessary for this approach, as essentially the entire document up to 

this subsection has been based on this approach.  It is the recommended approach assuming that both 

the reasonableness checks discussed above are performed and that a reasonable number of i.i.d. 

samples (sub-collections) are available – at least 40 and preferably 100 or more. 

However, there is one caveat – the i.i.d. Error Samples Only approach is applicable to the validation of 

(absolute) accuracy and predicted accuracy.  It is not applicable to the validation of relative accuracy or 

predicted relative accuracy, as the error samples in a correlated sub-collection must be retained for 

corresponding processing per Section 5.3. 

5.6.3 All Error Samples Approach 

This approach uses all available error samples for the validation of predicted accuracy (only) in 

conjunction with the baseline predicted accuracy processing of the earlier sections of this document.  

However, the corresponding predicted accuracy validation normalized error tolerances at the 99, 90, 

and 50% probability-levels (e.g., Tables 5.4.2-2 through 5.4.2-4) must be customized based on the 

assumed amount of common correlation amongst the error samples in a correlated sub-collection of 

error samples (e.g., approximately 0.80 positive correlation for each sub-collection, taking into account 

all contributing major error sources: their expected magnitude and degree of correlation).  This is 

somewhat involved and further assumes that the correlation can be reasonably estimated.  However, 
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this method can be used to “extract” all the information possible from the entire set of error samples – 

the lower the amount of positive correlation in a correlated sub-collection, the more the additional 

information available.  This can be particularly useful when the number of i.i.d. samples is small to begin 

with.  

For example, with 100 original i.i.d. horizontal error samples, each with an additional 5 correlated 

samples available with an assumed common correlation of 0.50, it was found (by systematic trial-and-

error) that processing all 600 samples using baseline predicted accuracy processing but with normalized 

error tolerances set to values corresponding to high predicted accuracy fidelity and 400 i.i.d. samples 

(see Table 5.4.2-2) was applicable.  Results are presented in Figure 5.6.3-1 below which basically 

duplicate the earlier baseline results corresponding to an explicit 400 i.i.d. samples of Figure 5.4.2-1, and 

are also better (less roll-off or Type II error) than if we had only used the original 100 i.i.d. samples, with 

earlier baseline results presented in Figure 5.4.2-2. 

  
Figure 5.6.3-1: Probability (confidence) of passing all three normalized error tests; high fidelity,  

100 i.i.d. samples, each with an additional 5 error samples correlated at 0.50; all 600 individual  

error samples utilized. 

As a reminder, the All Error Samples approach is not suitable for the validation of accuracy (as opposed 

to predicted accuracy) as it requires i.i.d. samples for the use of order statistics.  

5.6.4 Representative Error Samples Approach 

This method uses sample statistics to combine all error samples within a correlated sub-collection into 

one representative i.i.d. error sample and then proceeds with baseline accuracy validation processing as 

well as baseline predicted accuracy validation processing.  In particular, regarding the latter, it uses 

representative i.i.d. error samples only as well as the corresponding baseline normalized error 

tolerances.  For example, it uses Tables 5.4.2-2 through 5.4.2-4 for normalized error tolerances at the 
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three probability-levels, where the number of representative i.i.d. error samples (not total number of 

error samples) is used to index into the tables.  Although the number of i.i.d. error samples does not 

increase with this method, the “entire” collection/extraction solution-space is represented as much as 

possible.   

There are two sub-methods of the representative sample method, each using a somewhat different set 

of algorithms/equations to generate a representative i.i.d. error sample and normalized representative 

i.i.d. error sample.  They are described, along with examples, in the following Subsections 5.6.4.1 and 

5.6.4.2. 

Note that regardless the sub-method, the Representative Error Samples approach is only applicable to 

the validation of (absolute) accuracy and the validation of predicted accuracy.  It is not applicable to the 

validation of relative accuracy or predicted relative accuracy, as the error samples in a correlated sub-

collection must be retained for corresponding processing per Section 5.3. 

5.6.4.1 Sub-method 1 for Representative Error Samples 

Sub-method 1 is the baseline generation method for representative i.i.d. normalized error samples. It is 

relatively easy to implement and intuitive. 

The applicable algorithm/equations for sub-method 1 is presented in Equation (5.6.4.1-1) below and 

assumes an approximate common diagonal predicted error covariance matrix with standard deviations 

𝜎𝑥 and 𝜎𝑦 for each sample 𝑘 = 1, . . , 𝑛, in a correlated sub-collection and an empirical “combination 

algorithm” which is approximately equivalent to the sub-method 1.  

In the following, the sample mean represents the “common” error between the samples, and the 

sample sigma or standard deviation about this sample mean represents the “uncorrelated portion” of 

error in the samples. 

 Compute the sample mean and sample standard deviation about the                          (5.6.4.1-1) 

sample mean for each error component over the 𝑘 samples: 𝑚𝑒𝑎𝑛_𝑥, 𝑠𝑖𝑔𝑚𝑎_𝑥, 

𝑚𝑒𝑎𝑛_𝑦, 𝑠𝑖𝑔𝑚𝑎_𝑦  

o both computation of the sample mean and sample standard deviation are unbiased 

estimates – see Section 5.2.1 of TGD 2b for the explicit calculations   

 𝑒ℎ = ((𝑚𝑒𝑎𝑛_𝑥)2 + (𝑠𝑖𝑔𝑚𝑎_𝑥)2 + (𝑚𝑒𝑎𝑛_𝑦)2 + (𝑠𝑖𝑔𝑚𝑎_𝑦)2)
1

2 

 𝑒ℎ_𝑛𝑜𝑟𝑚 = (((𝑚𝑒𝑎𝑛_𝑥)2 + (𝑠𝑖𝑔𝑚𝑎_𝑥)2)/𝜎𝑥
2 + ((𝑚𝑒𝑎𝑛_𝑦)2 + (𝑠𝑖𝑔𝑚𝑎_𝑦)2)/𝜎𝑦

2)
1/2

 

 𝜖ℎ_𝑛𝑜𝑟𝑚99 = 𝜖ℎ_𝑛𝑜𝑟𝑚/3.035, 𝜖ℎ_𝑛𝑜𝑟𝑚90 = 𝜖ℎ_𝑛𝑜𝑟𝑚/2.146, 𝜖ℎ_𝑛𝑜𝑟𝑚50 = 𝜖ℎ_𝑛𝑜𝑟𝑚/1.177 

 test: 𝜖ℎ_𝑛𝑜𝑟𝑚99 < 1, 𝜖ℎ_𝑛𝑜𝑟𝑚90 < 1, and 𝜖ℎ_𝑛𝑜𝑟𝑚50 > 1 

 𝑟𝑒𝑝_𝑝𝑟𝑒𝑑_𝑟𝑎𝑑𝑖𝑎𝑙𝑋𝑋 = 𝜖ℎ_𝑛𝑜𝑟𝑚𝑋𝑋/ 𝜖ℎ, for plotting  

 In addition, 𝜖ℎ_𝑛𝑜𝑟𝑚𝑋𝑋 = 𝑒ℎ/𝐶𝐸_𝑋𝑋, where 𝑋𝑋 = 99,90,50, if scalar accuracy metrics are to 

be used 

Proceed with baseline accuracy and predicted accuracy validation for horizontal errors using the 
resultant horizontal radial error 𝑒ℎ and the normalized horizontal radial errors at the three different 
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probability levels that correspond to the representative horizontal error sample from each of the 
correlated sub-collections. 
 
The above corresponds to an individual representative (i.i.d.) normalized radial error sample associated 

with predicted accuracy validation.  The corresponding (internal) computation of representative 

horizontal radial error 𝑒ℎ is associated with accuracy validation as well and corresponds to taking the 

(approximate) root-mean-square (rms) of the individual correlated samples in the sub-collection.   

The use of an (approximate) rms  makes sense as it averages “error-power” over the samples.  It would 

be exactly equivalent to the rms if the sample sigma was computed as a biased estimate, i.e., involve the 

division of 𝑛 instead of (𝑛 − 1) samples.  However, experimental results for accuracy validation 

presented in Section 5.6.4.3 are somewhat better using the unbiased estimate.  But if samples are few 

(less than 5) division by 𝑛 should be used. 

Appendix G describes modifications to the above algorithm/equation if the predicted error covariance 

matrix is not approximately diagonal and common across the correlated samples in a correlated sub-

collection.  The above algorithm/equation was for 2d horizontal error samples.  Similar 

algorithms/equations are presented in Appendix H  for both vertical and 3d error samples. 

The following presents a detailed example of the above algorithm/equation for horizontal error 

samples. 

Example 

A simulation was performed that generated 60 sub-collections of horizontal error, each sub-collection 

containing 6 horizontal (2d) error samples correlated at 90% between each pair of samples in the sub-

collection.   

For each sub-collection, the simulation generated 6 (2d) horizontal error samples from a mean-zero 

multi-variate Gaussian probability distribution with a 12x12 joint covariance matrix consisting of block 

diagonals equal to  𝑐𝑜𝑣 = [
1 0
0 1.5625

] and off-diagonal blocks consisting of 𝑐𝑟𝑜𝑠𝑠𝑐𝑜𝑣 = 0.9 ∙ 𝑐𝑜𝑣, 

using the same method as detailed in Section 5.6.1.   

The matrix 𝑐𝑜𝑣 was also the assumed common predicted error covariance matrix used by the 

algorithm/equation for all samples in the sub-collection, i.e., 𝜎𝑥 = 1 and 𝜎𝑦 = 1.25.  This common 

predicted error covariance matrix is allowed to differ between sub-collections, but did not in this 

example.  Furthermore, since 𝑐𝑜𝑣 and the predicted covariance matrix were identical in this example, it 

is expected that the validation of predicted accuracy corresponding to high predicted accuracy fidelity 

will pass with high confidence.  In addition, a specified horizontal accuracy requirement of 𝐶𝐸90𝑠𝑝𝑒𝑐 =

3.1 meters was assumed  provided which is approximately 30% larger than the true 𝜖ℎ90 = 2.43 in this 

example; therefore, it is expected that validation of accuracy will pass as well with high confidence. 

Following generation of the samples, Equation 5.6.4.1-1 was implemented followed by the baseline 

validation of accuracy (Sections 4.1/5.1), but using representative error samples only instead of all of the 
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error samples.  Each representative error sample was simply selected as the first correlated error sample 

in the sub-collection for this simple simulation.  Corresponding simulated error samples, intermediate 

variables associated with Equation 5.6.4.1-1, and validation results are presented in Table 5.6.4.1-1.   

Table 5.6.4.1-1: Simulation and accuracy validation results corresponding to sub-method 1 of the 

representative error samples approach and 60 representative error samples 

 

For a given correlated sub-collection in the above table: (1) the sample mean and sample sigma for the x 

component of error were root-sum-squared to yield the x-component of representative horizontal error, 

(2) the sample mean and sample sigma for the y component of error were root-sum-squared to yield the 

y-component of representative horizontal error, and (3) the resultant x-component of representative 

horizontal error and the resultant y-component of representative horizontal error were root-sum-

squared to yield the representative horizontal radial error 𝜖ℎ of Equation (5.6.4.1-1).  Note that 

representative horizontal error was not identified explicitly in Equation (5.6.4.1-1), but is defined as 

𝜖𝑋 = [𝜖𝑥 𝜖𝑦]𝑇, where the components are always positive but have the correct magnitude.  These 

components are also involved in the computation of normalized horizontal radial error (𝑒ℎ_𝑛𝑜𝑟𝑚 ) in 

Equation (5.6.4.1-1). 

Baseline validation of predicted accuracy corresponding to high predicted accuracy fidelity (Section 

4.2/5.2) was also performed using the same simulation inputs, values of the intermediate variables 

presented above in Table 5.6.4.1-1, and computation of normalized representative radial errors via 

Equation 5.6.2.1-1, with results presented in Table 5.6.4.1-2. 

  

cor sub-collection

error components x y x y x y

cor hor error 1 0.3404 -0.4432 1.1941 0.8697 0.9775 -0.3895

0.2885 -0.1001 1.8352 1.0641 1.5275 0.5413

… 0.3371 -0.594 1.305 0.6484 0.8498 -0.3835

0.0598 -0.7392 1.9682 0.6259 0.9749 -0.1263

0.545 -0.3383 1.4509 0.8223 1.4814 -0.139

cor hor error 6 0.0219 -0.0601 1.6481 0.7785 1.4246 0.4877

sample mean 0.2654 -0.3791 1.5669 0.8015 1.206 -0.0015

sample sigma 0.1955 0.2688 0.3035 0.1605 0.3031 0.4159

rep hor error 0.3296 0.4647 1.596 0.8174 1.2435 0.4159

rep hor radial error

…

lub of 90th percentil hor radial at 90% confidence

best est 90th percentile hor radial error 2.2970 m,  where true value 2.4340 m

2.5430 m,  where true value 2.4340 m

0.5698

1 2 … 60

1.7932 1.3112

…



NGA.SIG.0026.05_1.0_ACCSPEC 

 
 

103 

Table 5.6.4.1-2: Simulation and predicted accuracy validation result corresponding to sub-method 1 of 

the representative error samples approach and 60 representative error samples 

 

As seen in the above tables, both the validation of accuracy and the validation of predicted accuracy 

were successful.  See Appendix G for the corresponding pseudo-code used to generate this example. 

Validation success versus sigma deviation 

Predicted accuracy validation success vs sigma deviation based on sub-method 1 are also presented in 

Figure 5.6.4.1-1 below and correspond to 100 representative (i.i.d.) horizontal normalized error samples 

and high predicted accuracy fidelity; each representative error sample was a combination of an original 

i.i.d. error sample with an additional 5 error samples correlated at 0.8; i.e., 100 correlated sub-

collections containing 6 correlated error samples each, and assumed uncorrelated across sub-

collections.   (See Appendix G for corresponding pseudo-code used to generate the results.) 

Note that it reasonably matches the results of Figure 5.4.2-2 which are based on 100 (non-

representative or “original”) i.i.d. error samples.  However, the latter will not represent the entire 

collection solution-space as well as the representative samples.   

cor sub-collection 1 2 … 60

norm rep radial errors:

at prob level 99% 0.1688 0.5859 0.4372

at prob level 90% 0.2387 0.8286 0.6184

at prob level 50% 0.4352 1.5107 1.1275

percent passing:

prob level 99%  < 1 test

prob level 90% < 1  test

prob level 50% > 1 test

98% ; pass as at least 93% req'd

58% ; pass as at least 38% req'd

92% ; pass as at least 79% req'd
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Figure 5.6.4.1-1: Probability of passing all three normalized error tests; high fidelity, 100 

representative i.i.d. error samples, each generated from 6 error samples correlated at 0.80;  

based on Equation (5.6.4.1-1) 

The above addressed predicted accuracy and its validation using sub-method 1.  Associated accuracy 

and its validation are also of interest using this sub-method and addressed in Subsection 5.6.4.3. 

5.6.4.2 Sub-method 2 for Representative Error Samples 

Sub-method 2 for the generation of representative i.i.d. error samples is an alternative to the baseline 

sub-method 1.  It is used in some operational systems. 

The applicable algorithm/equations for sub-method 2 is presented in Equation (5.6.4.2-1) below and 

assumes an approximate common diagonal predicted error covariance matrix with standard deviations 

𝜎𝑥 and 𝜎𝑦 for each sample 𝑘 = 1, . . , 𝑛, in a correlated sub-collection and an empirical “combination 

algorithm”.  

In the following, the sample mean represents the “common” error between the samples, and the 

sample sigma or standard deviation about this sample mean represents the “uncorrelated portion” of 

error in the samples. 

 Compute the sample mean and sample standard deviation about the                          (5.6.4.2-1) 

sample mean for each error component over the 𝑘 samples: 𝑚𝑒𝑎𝑛_𝑥, 𝑠𝑖𝑔𝑚𝑎_𝑥, 

𝑚𝑒𝑎𝑛_𝑦, 𝑠𝑖𝑔𝑚𝑎_𝑦  

o the computation of the sample mean and the sample standard deviation are unbiased 

estimates – see Section 5.2.1 of TGD 2b for the explicit calculations. 

 

 𝑒ℎ = ((𝑎𝑏𝑠(𝑚𝑒𝑎𝑛_𝑥) + 0.5𝑠𝑖𝑔𝑚𝑎_𝑥)2 + (𝑎𝑏𝑠(𝑚𝑒𝑎𝑛_𝑦) + 0.5𝑠𝑖𝑔𝑚𝑎_𝑦)2)1/2 
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 𝑒ℎ_𝑛𝑜𝑟𝑚 = ((𝑎𝑏𝑠(𝑚𝑒𝑎𝑛_𝑥) + 0.5𝑠𝑖𝑔𝑚𝑎𝑥)
2/𝜎𝑥

2 + (𝑎𝑏𝑠(𝑚𝑒𝑎𝑛_𝑦) + 0.5𝑠𝑖𝑔𝑚𝑎𝑦)
2
/𝜎𝑦

2)
1/2

 

 𝜖ℎ_𝑛𝑜𝑟𝑚99 = 𝜖ℎ_𝑛𝑜𝑟𝑚/3.035, 𝜖ℎ_𝑛𝑜𝑟𝑚90 = 𝜖ℎ_𝑛𝑜𝑟𝑚/2.146, 𝜖ℎ_𝑛𝑜𝑟𝑚50 = 𝜖ℎ_𝑛𝑜𝑟𝑚/1.177 

 test: 𝜖ℎ_𝑛𝑜𝑟𝑚99 < 1, 𝜖ℎ_𝑛𝑜𝑟𝑚90 < 1, and 𝜖ℎ_𝑛𝑜𝑟𝑚50 > 1 

 𝑟𝑒𝑝_𝑝𝑟𝑒𝑑_𝑟𝑎𝑑𝑖𝑎𝑙𝑋𝑋 = 𝜖ℎ_𝑛𝑜𝑟𝑚𝑋𝑋/ 𝜖ℎ, for plotting  

 In addition, 𝜖ℎ_𝑛𝑜𝑟𝑚𝑋𝑋 = 𝑒ℎ/𝐶𝐸_𝑋𝑋, where 𝑋𝑋 = 99,90,50, if scalar accuracy metrics are to 

be used. 

The above correspond to an individual representative (i.i.d.) normalized error sample associated with 

predicted accuracy validation.  The corresponding (internal) computation of representative radial error 

𝑒ℎ is used for accuracy validation as well.   Note that when correlation between samples in a correlated 

sub-collection is small, the sample standard deviation or “sigma” dominates the absolute sample mean-

value (mean-value approaches zero), and since only one-half of the sigma value is used in the above 

equation, 𝑒ℎ will be typically too small as will 𝑒ℎ_𝑛𝑜𝑟𝑚. 

Predicted accuracy validation success vs sigma deviation based on sub-method 2 are presented in Figure 

5.6.4.2-1 below and correspond to 100 representative (i.i.d.) horizontal normalized error samples and 

high predicted accuracy fidelity; each representative error sample was a combination of an original i.i.d. 

error sample with an additional 5 error samples correlated at 0.8; i.e., 100 correlated sub-collections 

containing 6 correlated error samples each, and assumed uncorrelated across sub-collections.   (See 

Appendix G for corresponding pseudo-code used to generate the results.) 

 

Figure 5.6.4.2-1: Probability of passing all three normalized error tests; high fidelity, 100 

representative i.i.d. error samples, each generated from 6 error samples correlated at 0.80; 

based on Equation (5.6.4.2-1) 
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Note that results do not match the results of Figure 5.4.2-2 very well which are based on 100 (non-

representative or “original”) i.i.d. error samples.   However, this is sensitive to the amount of correlation, 

as can be deduced from the results presented in the following subsection.  The following subsection also 

addresses accuracy and its validation using sub-method 2. 

5.6.4.3 Comparison of the Sub-methods for Generation of Representative Error Samples  

In terms of preference, sub-method 1 (the baseline) is first, followed by sub-method 2.  Direct 

comparison of the sub-methods (aka sub-options) is presented in Figure 5.6.4.3-1 below corresponding 

to: The percent of representative i.i.d. samples passing the 90% probability normalized error test with at 

least 90% confidence (perfect predicted accuracy fidelity is assumed and 500 realizations used).  Results 

are indicative of predicted accuracy validation (one of three tests) and are a function (x-axis) of the 

amount of correlation between samples in a correlated sub-collection.  100 representable samples are 

assumed, each generated from 6 correlated samples. 

 

Figure 5.6.4.3-1: Normalized error test results versus correlation (6 correlated samples) 

Ideally, the percent should be about 86 if it were to match 100 (non-representative) error sample results 

exactly (see Table 5.4.1-1), but a percent up to 90% or a little more is certainly reasonable. This is true 

for sub-method 1, but only true for certain correlation ranges for sub-method 2 per Figure 5.6.4.3-1. 

Additional results are presented in Figures 5.6.4.3-2 and 5.6.4.3-3 for a different number of correlated 

samples per correlation sub-collection.  Sub-method 2 is very sensitive to the assumed amount of 

correlation; whereas sub-method 1 is only sensitive when there are a small number of correlated 

samples per correlated sub-collection (Figure 5.6.4.3-3).  Regarding the latter, sensitivity could be 
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reduced by computing the sample sigma as a biased estimate (computation involves dividing by the 

number of correlated samples n instead of (n-1)).  This would decrease the representative radial error; 

hence, reduce the normalized error and therefore increase the “pass rate”.  This would raise the blue 

curve for lower values of correlations where the sample sigma dominates relative to the value of the 

sample mean (see Equation 5.6.4.1-1).  However, it also degrades somewhat the accuracy validation 

results documented later in this subsection. 

 

Figure 5.6.4.3-2: Normalized error test results versus correlation (16 correlated samples) 

 

Figure 5.6.4.3-3: Normalized error test results versus correlation (3 correlated samples) 
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In addition, accuracy validation results (as opposed to predicted accuracy validation results related to 

the above) were also computed, comparing those obtained using sub-methods 1 and 2, versus using 100 

(original) i.i.d. samples as a “truth”.  Order statistics were applicable for all methods and used to 

compute both the least-upper-bound for the 90th horizontal percentile at a 90% confidence-level as well 

as a best estimate of the percentile.  Results were averaged over 500 realizations and are presented in 

Table 5.6.4.3-1 below.  As can be seen, sub-method 1 provided the best overall results relative to using 

original i.i.d. samples.  However, results between the two sub-methods were generally similar for higher 

values of correlation.   

See Appendix G for corresponding pseudo-code used to generate the results of Table 5.6.4.3-1.  Errors 

were simulated consistent with a true 90th horizontal percentile equal to 3.47 meters which closely 

matches the “original iid be” results presented in the table. 

Table 5.6.4.3-1: Horizontal radial error 90th percentile least-upper-bound (lub) and best estimate (be) for 

100 representative errors sub-methods 1 and 2 and “truth” corresponding to 100 original i.i.d. error 

samples (orange: poor results; yellow: use with caution) 

 

In summary, taking both accuracy and predicted accuracy validation into account, sub-method 1 is 

preferred for the Representative Error Samples approach to account for the (positive) correlation 

between the samples in a correlated sub-collection.   

 

cor = sub-method 1 lub sub-method 2 lub orig iid lub sub-method 1 be sub-method 2 be orig iid be

0 4.24 3.52 4 3.73 3..13 3.43

0.2 4.02 3.71 3.96 3.58 3.29 3.4

0.4 3.9 3.9 3.99 3.47 3.43 3.42

0.6 3.83 4.03 3.98 3.4 3.54 3.44

0.8 3.85 4.12 3.97 3.36 3.59 3.43

0.999 3.99 4.02 3.99 3.43 3.46 3.43

cor = sub-method 1 lub sub-methods 2 lub orig iid lub sub-mehod 1 be sub-method 2 be orig iid be

0 4.06 2.95 3.99 3.54 2.63 3.42

0.2 3.87 3.35 3.99 3.41 2.98 3.42

0.4 3.75 3.67 3.99 3.36 3.23 3.42

0.6 3.71 3.9 4 3.31 3.43 3.44

0.8 3.8 4.07 3.99 3.32 3.55 3.43

0.999 4.01 4.04 4.01 3.43 3.46 3.43

number of samples per correlated sub-collection = 16

cor = sub-method 1 lub sub-method 2 lub orig iid lub sub-method 1 be sub-method 2 be orig iid be

0 4.02 2.51 4 3.47 2.22 3.44

0.2 3.8 3.1 3.99 3.33 2.75 3.44

0.4 3.66 3.51 3.98 3.27 3.1 3.43

0.6 3.61 3.77 3.97 3.22 3.32 3.42

0.8 3.75 4.01 3.99 3.26 3.48 3.43

0.999 3.99 4.02 3.99 3.49 3.47 3.45

number cor samples per correlated sub-collection = 3

number cor samples per correlaed sub-collection = 6
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5.7 The Effect of Errors in Ground Truth Data and Corresponding 

Compensation 
Errors in the coordinate values of ground truth contribute to sample errors since geolocations are 

differenced from corresponding ground truth locations in order to generate these sample errors.  The 

validation processes described in the earlier sections of this document assumed that this was not an 

issue – ground truth accuracy was assumed much better than the corresponding NSG system’s 

geolocation accuracy under test; hence, their contributory errors were negligible.  This section of the 

document presents guidance regarding when this assumption is actually true, and how processing 

should change when errors in ground truth coordinate values cannot be dismissed.  It also presents 

practical advice, i.e., “bends” theory somewhat for real-world validation when the ideal is seldom 

applicable. 

(Note: the term “ground truth” can be considered somewhat of a misnomer as actual ground truth 

points are in error; hence, some prefer the term “reference point” instead [4].) 

Assume that (a priori) ground truth accuracy is expressed as a scalar accuracy metric such as 𝐶𝐸90𝐺𝑇 

meters.  Furthermore, assume that it is expressed as a percentage (unit-less) of the corresponding 

accuracy under test, assumed equal to 𝐶𝐸90𝑠𝑝𝑒𝑐 since its actual value is not known.  Their combined or 

total test accuracy is their root-sum-square, again assumed expressed as a percentage of the 

corresponding accuracy under test and illustrated in Figure 5.7-1 below: 

 
Figure 5.7-1: The effect of ground truth accuracy on total test accuracy 
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Thus, for example, if ground truth accuracy is equal to 20% of the accuracy under test (“preferred” in 

Figure 5.7-1), total test accuracy is only approximately 2% larger than the accuracy under test.  The 

following is recommended guidance on validation processing as a function of ground truth accuracy 

expressed as a percentage of the accuracy under test: 

(1) If 20% or less: proceed as usual for both the validation of accuracy and the validation of predicted 

accuracy – no special processing is required.   

This is the preferred and recommended level for ground truth accuracy.  As arbitrary but specific 

examples, if addressing the validation of an NSG geolocation system with a 2 meter accuracy 

requirement, ground truth accuracy should be 40 centimeters or better; if a 5 meter accuracy 

requirement, 1 meter or better. 

It is also of benefit to include this “20% or less” guidance in the formal specification of accuracy 

requirements as part of the general description of corresponding validation requirements. 

Note that reference [1] recommends “10% or less”, i.e., “an order of magnitude better”; however, 

although desirable, particularly if ground truth error includes a considerable bias, this requirement is 

considered too stringent for most practical validations and is to be considered a “goal” instead. 

(2) If 33% or less but larger than 20%: proceed as usual for the validation of accuracy assuming that 

there is at least a 10% margin built-in to the specified accuracy requirement for validation (not unusual); 

proceed as usual for the validation of predicted accuracy other than that corresponding to high 

predicted accuracy fidelity.  (See [4, 6] for additional references regarding the applicability of 33% or the 

“3:1” rule.) 

(3) If the above are not applicable because the a priori ground truth accuracy is relatively too large and 

if better ground truth cannot be obtained, (reluctantly) proceed as follows: 

(a) If ground truth accuracy is no larger than 50% the value of the accuracy under test: proceed 

with modified validation processing as outlined in the next paragraphs. 

(b) If ground truth accuracy is greater than 50% the value of the accuracy under test: formal 

validation should not be performed. 

Modified Accuracy Validation Processing 

The following assumes that horizontal and vertical radial 90th percentiles are of interest and the  

corresponding specified accuracy requirements are expressed as 𝐶𝐸90𝑠𝑝𝑒𝑐 and 𝐿𝐸90𝑠𝑝𝑒𝑐, respectively, 

and the ground truth accuracy estimates are expressed as 𝐶𝐸90𝐺𝑇 and 𝐿𝐸90𝐺𝑇, respectively. 

Use the following adjusted requirements during validation and then proceed as usual: 

𝐶𝐸90𝑠𝑝𝑒𝑐_𝑎𝑑𝑗 = √𝐶𝐸90𝑠𝑝𝑒𝑐
2 + 𝐶𝐸90𝐺𝑇

2         (5.7-1) 
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𝐿𝐸90𝑠𝑝𝑒𝑐_𝑎𝑑𝑗 = √𝐿𝐸90𝑠𝑝𝑒𝑐
2 + 𝐿𝐸90𝐺𝑇

2  

Modified Predicted Accuracy Validation Processing 

For the normalized error tests, first adjust the predicted error covariance matrix for sample 𝑘 by the 

corresponding a priori error covariance for the ground truth (the same ground truth covariance is 

assumed for all samples) and then proceed as usual: 

𝐶𝑋_𝑝𝑟𝑒𝑑𝑠_𝑘 → 𝐶𝑋_𝑝𝑟𝑒𝑑𝑠_𝑘 + 𝐶𝑜𝑣𝐺𝑇, where       (5.7-2) 

𝐶𝑜𝑣𝐺𝑇 =

[
 
 
 (𝐶𝐸90𝐺𝑇/𝑑ℎ_90)

2
0 0

0 (𝐶𝐸90𝐺𝑇/𝑑ℎ_90)
2

0

0 0 (𝐿𝐸90𝐺𝑇/𝑑𝑣_90)
2
]
 
 
 

 and 

𝑑ℎ_90 = 2.146 and 𝑑𝑣_90 = 1.645.  (The 𝐶𝐸 scale factor 𝑑ℎ_90 is based on assumed and approximate 

value of 1 for the “sqrt_ratio_eigenvalue” corresponding to the actual 𝐶𝑜𝑣𝐺𝑇, i.e., a non-elongated error 

ellipse, which is a reasonable assumption for accurate surveyed ground truth.) 

All of the above processing assumed the use of 𝐶𝐸90 and 𝐿𝐸90 for convenience.  Corresponding 

guidance is also applicable to (3d) radial errors (accuracy) as well as to different levels of probability 

(95% or 50%) in a straight-forward and similar manner. 

Correlated Errors 

The above assumed that correlated ground truth errors were not a factor.  This is certainly true when 

ground truth errors are negligible.  When not: 

If the above modified validation processing is applicable, any intra-state correlations between a ground 

point’s components of errors (e.g. 𝜖𝑥 correlated with 𝜖𝑦), if known, can be incorporated directly as off-

diagonal terms in the assumed 𝐶𝑜𝑣𝐺𝑇, although typically not required. 

If the above modified validation processing is applicable, any inter-state correlation (correlation of 

errors between different ground points) for ground points corresponding to a given set of sensor data 

(but not across different sets) will automatically be addressed per the techniques of Section 5.6  

If correlation is across different sets (e.g., same test site used for many different sets of sensor data), 

there is no practical modification of validation processing.  However, although not ideal, the effect can 

be ignored because ground truth accuracy is assumed no greater than 50% the value of the accuracy 

under test; thus, correlation corresponding to combined errors between different error samples is no 

greater than (plus) 20% assuming independent error samples for the other contributing errors.  This 

amount of correlation can be ignored for reasonable but approximate validation results.  However, if 

ground truth accuracy is greater than 50% the value of the accuracy under test, then this correlation 

cannot be ignored and formal validation should not be done (another reason for the earlier 50% 

restriction.) 
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(Note: the above 20% correlation between different samples of combined errors is derived as follows: 

𝑐𝑜𝑟 ≤
0.52

1+0.52 = 0.20.) 

Relative Accuracy 

In general, all of the previous guidance of the current section is also applicable to relative accuracy and 

predicted relative accuracy.  However, subsequent requirements on ground truth point accuracy may be 

more stringent (as a relative percent) since requirements for relative accuracy may be more stringent 

than for (absolute) accuracy.  On the other hand, validation of relative accuracy involves only point-pairs 

extracted from the same set of sensor data.  Hence, any correlation of corresponding ground truth 

errors is beneficial as they tend to cancel out statistically.  In particular, a relevant pair of correlated 

ground truth points has a combined effect of relative accuracy equal to√2(1 − 𝑐𝑜𝑟) 𝐶𝐸90𝐺𝑇, for 

example.  The higher the (positive) correlation, the less the effect of ground truth errors on the 

validation of relative accuracy. 

6 Notes 

6.1 Intended Use 
This information and guidance document provides technical guidance to inform the development of 

geospatial data accuracy characterization for NSG GEOINT collectors, producers and consumers -- 

accuracy characterization as required to describe the trustworthiness of geolocations for defense and 

intelligence use and to support practices that acquire, generate, process, exploit, and provide 

geolocation data and information based on geolocation data.  This document is part of a series of 

complementary documents.  TGD 2c provides technical guidance for methods, practices, and algorithms 

in specification and validation as of part of a series of information and guidance documents titled 

Accuracy and Predicted Accuracy in the NSG.  Other documents in this series address a more generalized 

overview of accuracy and predicted accuracy and additional topic specific technical guidance in 

predictive statistics, sample statistics, estimators and quality control, Monte-Carlo simulation, and 

external data and quality assessment.   
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 Additional Terms and Definitions 

There are a number of authoritative guides as well as existing standards within the NSG and Department 

of Defense for definitions of the identified additional terms used in this technical guidance document.  In 

many cases, the existing definitions provided by these sources are either too general or, in some cases, 

too narrow or dated by intended purposes contemporary to the document's development and 

publication.  The definitions provided in this document have been expanded and refined to explicitly 

address details relevant to the current and desired future use of accuracy in the NSG.  To acknowledge 

the basis and/or linage of certain terms, we reference the following sources considered as either 

foundational or contributory: 

[a] Anderson, James M. and Mikhail, E., Surveying: Theory and Practice, 7th Edition, WCB/McGraw-Hill, 

1998. 

[b] DMA-TR-8400.1, DMA Technical Report: Error Theory as Applied to Mapping, Charting, and Geodesy. 

[c] Defense Mapping Agency, Glossary of Mapping, Charting, and Geodetic Terms, 4th Edition, Defense 

Mapping Agency Hydrographic/Topographic Center, 1981. 

[d] ISO TC/211 211n2047, Text for ISO 19111 Geographic Information - Spatial referencing by 

coordinates, as sent to the ISO Central Secretariat for issuing as FDIS, July 17, 2006. 

[e] Joint Publication (JP) 1-02, Department of Defense Dictionary of Military and Associated Terms, 

November 8, 2010 as amended through January 15, 2016. 

[f] MIL-HDBK-850, Military Handbook: Glossary of Mapping, Charting, and Geodetic Terms, January 21, 

1994. 

[g] MIL-STD-2401, Department of Defense Standard Practice; Department of Defense World Geodetic 

System (WGS), January 11, 1994  

[h] MIL-STD-600001, Department of Defense Standard Practice; Mapping, Charting and Geodesy 

Accuracy, February 26, 1990. 

[i] National System for Geospatial Intelligence [Brochure] Public Release Case #15-489. 

[j] NGA.STND.0046_1.0, The Generic Point-cloud Model (GPM): Implementation and Exploitation, 

Version 1.0, October 03, 2015. 

[k] Oxford Dictionaries (www.oxforddictionaries.com/us/) copyright © 2016 by Oxford University Press. 

[l] Soler, Tomas and Hothem, L., “Coordinate Systems Used in Geodesy: Basic Definitions and Concepts”, 
Journal of Surveying Engineering, Vol. 114, No. 2, May 1988. 
 

A priori - Relating to or denoting reasoning or knowledge that proceeds from theoretical deduction 

rather than from observation or experience.  [k]  

 For typical NSG accuracy and predicted accuracy applications, a priori refers to a mathematical 

statistical model of errors and/or the corresponding state vector containing those errors prior to 

its adjustment using additional information. 

http://www.oxforddictionaries.com/us/
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A posteriori - Relating to or denoting reasoning or knowledge that proceeds from observations or 

experiences to the deduction of probable causes. [k] 

 For typical NSG accuracy and predicted accuracy applications, a posteriori refers to a refined 

mathematical statistical model of errors and/or the corresponding state vector containing those 

errors following its adjustment using additional information. 

Absolute Horizontal Accuracy - The range of values for the error in an object’s horizontal metric 

geolocation value with respect to a specified geodetic horizontal reference datum, expressed as a radial 

error at the 90 percent probability level (CE). [b],[f],[j] 

 There are two types of absolute horizontal accuracy: predicted absolute horizontal accuracy is 

based on error propagation via a statistical error model; and measured absolute horizontal 

accuracy is an empirically derived metric based on sample statistics. 

 The term “horizontal accuracy” is assumed to correspond to “absolute horizontal accuracy”. 

 The 90% probability level (CE) is the default; 95% and 50% probability levels are optional, i.e., 

CE_95 and CE_50, respectively. 

Absolute Vertical Accuracy - The range of values for the error in an object’s metric elevation value with 

respect to a vertical reference datum, expressed as a linear error at the 90 percent probability level (LE). 

[b],[f],[j] 

 There are two types of absolute vertical accuracy: predicted absolute vertical accuracy is based 

on error propagation via a statistical error model; and measured absolute vertical accuracy is an 

empirically derived metric based on sample statistics.  

 The term “vertical accuracy” is assumed to correspond to “absolute vertical accuracy”. 

 The 90% probability level (LE) is the default; 95% and 50% probability levels are optional, i.e., 

LE_95 and LE_50, respectively. 

Bias Error - A category of error; an error that does not vary from one realization (trial or experimental 

outcome) to the other.  When error is represented as a random variable, random vector, stochastic 

process, or random field, a bias error corresponds to a non-zero mean-value. [f],[j]  

 Caution: a given realization of a mean-zero stochastic process with typical temporal correlation 

and over a reasonable finite time interval appears to have a non-zero sample mean-value; 

however, when sample statistics are taken over enough multiple (independent) realizations, the 

sample mean-value approaches zero in accordance with the true mean-value.  This 

characteristic extends to random fields as well. 
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Confidence Ellipsoid - An ellipsoid centered at an estimate of geolocation such that there is a 90% 

probability (or XX% if specified specifically) that the true geolocation is within the ellipsoidal boundary 

(ellipsoid interior).  A confidence ellipsoid is typically generated based on an error covariance matrix, an 

assumed mean-value of error equal to zero, and an assumed multi-variate Gaussian probability 

distribution of error in up to three spatial dimensions. 

Confidence Interval - A type of interval estimate of an unknown population parameter in statistics.  

More specifically, if 𝑋 is a vector of random samples from a probability distribution with statistical 

parameter 𝜃 which is to be estimated with confidence-level (confidence coefficient) 𝛾: 

 𝑝𝑟𝑜𝑏{𝑎(𝑋) < 𝜃 < 𝑏(𝑋)} = 𝛾, where 𝑎(𝑋) and 𝑏(𝑋) are random end-points and functions of 𝑋. 

  Note that the probability distribution need not be specified, but typically is, e.g., a Gausssian 

(Normal) distribution, a commonly assumed continuous probability distribution. 

 Typical parameters represented by 𝜃 are the distribution’s (or corresponding random variable’s) 

mean-value, standard deviation, or percentile. 

 The above confidence interval is a two-sided confidence interval; a one-sided confidence 

interval involves only 𝑎(𝑋) or 𝑏(𝑋) and is bounded on one side, e.g., 𝑝𝑟𝑜𝑏{𝜃 < 𝑏(𝑋)} = 𝛾. 

Confidence Interval (Order Statistics) - Similar to a confidence interval (see above) except computed 

using order (nonparametric) statistics in which a specific probability distribution is not assumed and a 

finite set of ordered (by ascending magnitude) samples 𝑦𝑖, 𝑖 = 1, . . , 𝑛, of a random variable 𝑥 are 

available.  Thus, assuming that the unknown probability distribution is continuous and that the 

parameter of interest is 𝑥𝑝, the 𝑝 percentile of the corresponding random variable 𝑥, as typically the 

case for an NSG application: 

 𝑝𝑟𝑜𝑏{𝑦𝑘 < 𝑥𝑝 < 𝑦𝑘+𝑟} ≥ 𝛾, where the specific order sample indices 𝑘 and (𝑘 + 𝑟) are such 

that 𝑟 is the smallest positive integer such that the probability or confidence bound is met. 

 Note that once the order sample indices 𝑘 and (𝑘 + 𝑟) are specified (determined), the two-

sided confidence interval corresponds to a specific confidence 𝛾0 ≥ 𝛾, i.e., 𝑝𝑟𝑜𝑏{𝑦𝑘 < 𝑥𝑝 <

𝑦𝑘+𝑟} = 𝛾0.  This is the reason why 𝛾 is sometimes referred to as the “specified (minimum) 

confidence-level”. 

 A one-sided confidence interval based on order statistics is typically of the form 𝑝𝑟𝑜𝑏{𝑥𝑝 <

𝑦𝑘^} ≥ 𝛾, where the ordered sample 𝑦𝑘^ is the smallest valued ordered sample (equivalently, 

𝑘^ the smallest index) such that the probability or confidence bound is met. 

 Note that all of the above are applicable to discrete probability distributions as well; simply 

substitute ≤ for < inside the interval, for example: 𝑝𝑟𝑜𝑏{𝑦𝑘 ≤ 𝑥𝑝 ≤ 𝑦𝑘+𝑟} ≥ 𝛾. 
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Correlated Error - A category of errors; errors that are correlated with other errors, and typically 

represented in the NSG as a random vector, stochastic processes, or random field.  A correlated error is 

independent (uncorrelated) with itself and other errors from one realization (trial or experimental 

outcome) to the next.  However, within a given realization, it is correlated with other errors of interest:   

 If a random vector, the various elements (random variables) which make it up are correlated 

with each other (intra-state vector correlation). 

 If a stochastic process, the collection of random vectors which make up the stochastic process 

are correlated with each other (inter-state vector correlation).  That is, the elements of one 

random vector are correlated with the elements of another random vector, typically the closer 

the two random vectors in time, the greater the correlation.  A similar concept is applicable to 

random fields. 

Correlated Values - Values (of random variables) which are related by a statistical interdependence. For 

two random variables, this interdependence is represented by their covariance and typically expressed 

as a correlation coefficient – both have non-zero values.  This interdependence is relative to deviations 

about their respective mean-values.  [f]     

Covariance - A measure of the mutual variation of two random variables, where variations (deviations or 

dispersions) are about their respective mean-values. If the covariance between two random values is 

zero, they are uncorrelated. [b]  

Covariance Matrix - A symmetric, 𝑛𝑥𝑛 positive definite matrix populated with the variances and 

covariances of the random variables contained within a single, multi-component (𝑛𝑥1) state vector or 

random vector.  Note that if row 𝑖 ( 1 ≤ 𝑖 ≤ 𝑛) and all corresponding columns 𝑗 ( 1 ≤ 𝑗 ≤ 𝑛 ,𝑗 ≠ 𝑖) are 

zero, random variable 𝑖 is uncorrelated with all of the other random variables 𝑗.  [b] 

Cross-covariance Matrix - An 𝑛𝑥𝑚 matrix containing the covariance between each pair of elements 

(random variables) of an 𝑛𝑥1 random vector and an 𝑚𝑥1 random vector. 
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Error (augmented definition) - The difference between the observed or estimated value and its ideal or 

true value. [f] There are a number of different categories of errors applicable to the NSG: Bias Error, 

Random Error, and Correlated Error.  In general, an error of interest may be a combination of errors 

from these categories. Their combination is typically represented as either a random variable, random 

vector, stochastic process, or random field: 

 A random variable represents a bias error plus a random error.  The former corresponds to the 

random variable’s mean-value, and if equal to zero, the random variable represents random 

error only, which is uncorrelated from one realization of the random variable to the next 

realization. 

 A random vector, stochastic process, and random field can represent all three categories of 

error.  The random variables that make-up (are elements of) random vectors are uncorrelated 

from one realization to the next by definition.  However, within a given realization, they can also 

be correlated with each other:   

o For a random vector per se, this correlation is also termed “intra-state vector 

correlation”. 

o For a stochastic process, which consists of a collection of random vectors, random 

variables in one random vector can also be correlated with random variables in another 

random vector; this is also termed “inter-state vector” correlation.  The same concept is 

applicable to random fields. 

Error Ellipsoid - An ellipsoid such that there is a 90% probability (or XX% if specified specifically) that 

geolocation error is within the ellipsoidal boundary (ellipsoid interior).  An error ellipsoid can be  

generated based on a predictive or sample-based  error covariance matrix, centered at an assumed 

predictive mean-value of error equal to zero or a sample-based mean-value of error not equal to zero, 

and an assumed multi-variate Gaussian probability distribution of error in up to three dimensions. 

Estimator - An algorithm/process which estimates the value of an nx1 state vector.  Its inputs are 

measurements related to the state vector and may include a priori information about the state vector.  

 An estimator is usually designed to be an optimal estimator relative to a cost function, such as 

the sum of weighted a posteriori measurement residuals, minimum mean-square solution error, 

etc.   

 Estimators are sequential or batch processes, and an optimal estimator should include both an 

estimate of the state vector and its predicted accuracy, usually an error covariance matrix, as 

output. A properly implemented MIG for a target’s geolocation is an optimal estimator. 
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Gaussian (or Normal) probability distribution - A specific type of probability distribution for a random 

variable.  The distribution is specified by either a Gaussian probability density function or a Gaussian 

cumulative distribution function.  These in turn are completely characterized by the random variable’s 

mean-value and variance.   

 The Gaussian (probability) distribution is a common distribution that approximates many kinds 

of errors of interest to the NSG, and approximates the distribution for a sum of errors from 

different (non-Gaussian) distributions as well (Central Limit Theorem).  A Gaussian distribution 

corresponding to an nx1 random vector is termed a multi-variate Gaussian distribution. 

Horizontal Error - As applied to geospatial measurements and processes, horizontal error is typically 

observed in the 𝑥, 𝑦 plane of a local right-handed coordinate system where the 𝑥, 𝑦 plane is defined as 

tangent to the defined reference surface at the point of origin.  While horizontal error is the 𝑥 and 𝑦 

components of error, it may be generalized by its magnitude or 2D radial error.   

Inter-state vector correlation - The correlation between the errors (random variables) of the elements 

in two different state vectors. 

Intra-state vector correlation - The correlation between the errors (random variables) of different 

elements in the same state vector. 

Least-upper-bound - The smallest value (real number) greater than or equal to a quantity of interest, 

assuming an analytic (deterministic) application.  If a statistical or probabilistic-based application, the 

definition is extended to account for random variables.  In particular, for the specification and validation 

of accuracy based on order statistics using i.i.d. samples of the random variable defined as geolocation 

radial error, and assuming that horizontal radial error at the 50th percentile is of interest for specificity: 

 The least-upper-bound 𝑙𝑢𝑏_𝜖ℎ50 is defined as the smallest value greater than the true (and 

unknown) 50th percentile of horizontal radial error 𝜖ℎ50, where horizontal radial error 𝜖ℎ is a 

random variable.  The least-upper-bound also corresponds to an accompanying and 

independently specified (minimum) level-of-confidence, typically 90%.  Correspondingly, 

𝑙𝑢𝑏_𝜖ℎ50 is equal to the smallest order sample value of horizontal radial error such that: 

o 𝑝𝑟𝑜𝑏{𝜖ℎ50 < 𝑙𝑢𝑏_𝜖ℎ50} ≥ 0.90 

 As the number of samples increase, the closer (statistically) 𝑙𝑢𝑏_𝜖ℎ50 comes to 𝜖ℎ50. 

 The (probabilistic) lub is equivalent to a one-sided confidence interval based on order statistics. 

Local Tangent Plane Coordinate System - A local X,Y,Z right-handed rectangular coordinate system such 

that the origin is any point selected on a given reference ellipsoid, its XY plane is tangent to the 

reference ellipsoid at the point of origin, and the Y-axis is typically directed to the North Pole (an East-

North-Up (ENU) system). [a] 
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Mean-Value - The expected value of a random variable.  Given a collected sample of measurements, the 

sample mean-value is the average of the values of the sample measurements.  The mean-value of a 

predictive error is typically assumed zero unless specifically stated otherwise.  If correctly modelled, the 

predictive mean-value should be closely approximated by the sample mean-value taken over a large 

number of independent and identically distributed samples.  

 The concept of mean-value readily extends to random vectors and is the vector of the mean-

values of the individual components or random variables making up the random vector.  It 

readily extends to stochastic processes and random fields as well, since they are collections of 

random vectors.  If (wide-sense) stationary or (wide-sense) homogeneous, respectively, their 

corresponding mean-value is a constant random vector mean-value. 

Multi-Image Geopositioning (MIG) - An optimal solution for a “target’s” geolocation (state vector) with 

reliable predicted accuracies based on the (weighted) measurements of the geolocation in one or more 

images.    A batch process which minimizes the sum of weighted a posteriori measurement residuals, 

where the latter may also include measurements equivalent to a priori estimates of geolocation.  MIG 

can also correspond to the simultaneous solution for the geolocation of multiple targets.  In general, a 

MIG solution’s predicted accuracies correspond to or are derived from the solution’s a posteriori error 

covariance matrix. 

Order Statistics - Nonparametric statistics performed on a set ordered by ascending magnitude of 

randomly sampled values.  Nonparametric statistics assume no a priori information about the underlying 

probability distribution of a random variable such as its mean-value, variance, or type of probability 

distribution function.  In the NSG, order statistics are used to compute scalar accuracy metrics from 

independent and identically distributed samples of error. 

Percentile - If a random variable’s probability (or sample) distribution is divided into 100 equal parts, the 

value of the random variable that corresponds to the percentage of the distribution equal to or below 

the specified percentile, e.g. the 90th percentile indicates the lowest sample value such that it is greater 

than the values of 90 percent of the samples.  

 A more formal definition is as follows: The 𝑝 percentile of a random variable 𝑥 is defined as the 

smallest number 𝑥𝑝 such that 𝑝 = 𝑝𝑟𝑜𝑏{𝑥 ≤ 𝑥𝑝}.  Thus, the probability distribution function 

(typically unknown) of the random variable 𝑥 evaluated at 𝑥𝑝 is equal to 𝑝.   𝑥𝑝 is a deterministic 

parameter with typically unknown value.   

Precision - The closeness to one another of a set of repeated observations of a random variable. [a],[f] 

 In terms of accuracy, precision is a measure of the repeatability of the underlying errors.  High 

accuracy implies high precision, but not vice versa.  For example, for an error represented as a 

random variable, high precision implies a small standard deviation, but high accuracy implies 

both a small standard deviation and a small or zero mean-value (or bias). 
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Probability density function (pdf) - A function that defines the probability distribution of a random 

variable.  If continuous, its integral is the (cumulative) probability distribution function. 

Probability distribution - Identifies the probability of a random variable’s values over an applicable 

range of values.  There are many different types of probability distributions: Gaussian or Normal, 

uniform, exponential, etc. 

 In most NSG applications for accuracy and predicted accuracy, the random variable and its 

probability distributions are assumed continuous. 

 The probability distribution is specified by either a probability density function or a (cumulative) 

probability distribution function; either based on an a priori model or sample statistics. 

Probability distribution function (cdf) - The (cumulative) probability distribution function defines the 

probability that a random variable’s value is less than or equal to a specified number in the interval 

[0,1]. 

Radial Error - A generalization of two horizontal error components (𝑥, 𝑦) or three dimensional 

(horizontal and vertical error components – 𝑥, 𝑦, 𝑧) error components to a distance value (magnitude) as 

measured along the radius of a circle or sphere, respectively. 

Random Error - A category of error; a measure of deviation from an ideal or true value which results 

from an accidental and unknown combination of causes and varies from one measurement to the next. 

Not deterministic.  For NSG applications, a random error is typically represented as a random variable, 

random vector, stationary process, or random field.  And more specifically, as deviations about their 

mean-values, the latter considered biases. [b],[f] 

 The random error corresponding to a random variable or the random error corresponding to 

(the elements of) a random vector are independent (uncorrelated) from one realization to the 

next, by definition. 

 The random error corresponding to (the elements of) a random vector can also be correlated 

between the various elements for a given realization (intra-state vector correlation); hence this 

error is also a correlated error. 

 The random error corresponding to a stochastic process corresponds to the collection of 

random errors associated with the collection of random vectors making up the stochastic 

process.  Random error is independent (uncorrelated) from one realization to the next.  

However, within a specific realization, the individual random error vectors are typically 

temporally correlated amongst themselves (inter-state vector correlation); hence, random error 

is also correlated error.  This same characteristic extends to random fields. 

 The probability distribution for a random variable representing a random error is arbitrary – not 

necessarily Gaussian.  
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Random Error Vector - An error represented by a nx1 random vector, and in the NSG, typically 

corresponds to the error in a state vector’s value.  The error itself could correspond to a combination of 

errors from different error categories: bias error, random error, and/or correlated error.  That is, the 

term “random error vector” does not imply the corresponding category of error is necessarily (only) 

“random error”. 

Random Variable - A variable whose value varies by chance, i.e., non-deterministic. Somewhat more 

formally, a random variable is a mapping from the space of experimental outcomes to a space of 

numbers.  In the NSG, when error is represented by a random variable (a random vector with one 

component or element, i.e., n=1), its corresponding statistics are specified by a statistical error model. 

 For most NSG applications, the space of experimental outcomes is already a number.  For 

example, the x-component of sensor position can be considered a random variable.  

Equivalently, it can be defined as the true x-component of sensor position plus x-component of 

sensor position error, the former a deterministic (typically unknown) value and the latter a 

random variable.   

 A random variable is statistically characterized by its mean-value, variance, and (more 

completely) its probability density function (pdf).  The probability density function (pdf) is 

typically unknown and not included, but if needed for the calculation of probabilities, assumed 

Gaussian distributed with the pdf completely characterized by the mean-value and variance. 

Random Vector - A random vector (RV) is an nx1 vector which contains n random variables as 

components or elements.  In the NSG, when error is represented as a random vector, its corresponding 

statistics are specified by a statistical error model.  The corresponding random vector is also sometimes 

termed a random error vector.  

 The realization of a Random Vector corresponds to a specific value of the vector (components or 

elements) for a given event such as a trial or experiment.  Important descriptive statistics of a RV 

are its mean (vector) value and the error covariance matrix about the mean, and optionally, a 

multi-variate probability density function.  These statistics can be predictive or sample-based. 

Realization - For NSG accuracy and predicted accuracy applications, a specific trial or experimental 

outcome or independent sample involving a random error (category of error). 

Relative Horizontal Accuracy - The range of values for the error in the difference between two objects’ 

horizontal metric geolocation values with respect to a specified geodetic horizontal reference datum; 

e.g. expressed as a radial error at the 90 percent probability level (CE90). There are two types of relative 

horizontal accuracy: predicted relative horizontal accuracy is based on error propagation via a statistical 

error model(s); and measured relative horizontal accuracy is an empirically derived metric based on 

sample statistics. 
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Relative Vertical Accuracy - The range of values for the error in the difference between two objects’ 

vertical metric geolocation values with respect to a specified geodetic vertical reference datum; e.g.  

expressed as a linear error at the 90 percent probability level (LE90). There are two types of relative 

vertical accuracy: predicted relative vertical accuracy is based on error propagation via a statistical error 

model(s); and measured relative vertical accuracy is an empirically derived metric based on sample 

statistics. 

Rigorous Error Propagation - Represents the proper statistical modeling of all significant errors and their 

interrelationships throughout an NSG system.  It enables optimal solutions as well as reliable predicted 

accuracies associated with specific estimates and products across the system modules. 

Scalar Accuracy Metrics (augmented definition) - convenient one-number summaries of geolocation 

accuracy and geolocation predicted accuracy expressed as a probability:   [b],[f], and [h] 

 Linear Error (LE) - LE is an unsigned value that corresponds to the length of a vertical line 

(segment) such that there is a 90% probability that the absolute value of vertical error resides 

along the line.  If the line is doubled in length and centered at the target solution, there is a 90% 

probability that the true target vertical location resides along the line.  LE_XX corresponds to LE 

at the XX % probability level. 

 Circular Error (CE) - CE is an unsigned value that corresponds to the radius of a circle such that 

there is a 90% probability that the horizontal error resides within the circle; or equivalently, if 

the circle is centered at the target solution, there is a 90% probability the true target horizontal 

location resides within the circle.  CE_XX corresponds to CE at the XX % probability level.  

 Spherical Error (SE) - SE is an unsigned value that corresponds to the radius of a sphere such that 

there is a 90% probability that 3d error resides within, or equivalently, if the sphere is centered 

at the target solution, there is a 90% probability that the true target location resides within the 

sphere.  SE_XX corresponds to SE at the XX % probability level. 

For the above scalar accuracy metrics:  

 It is assumed that the underlying 𝑥-𝑦-𝑧 coordinate system is a local tangent plane system, i.e., 𝑥 

and 𝑦 are horizontal components and 𝑧 the vertical component.   

 CE-LE corresponds to the CE-LE error cylinder.  There is a probability between 81 to 90 percent 

that 3d radial error resides within the cylinder.  The former value corresponds to uncorrelated 

horizontal and vertical errors, the latter value to highly correlated horizontal and vertical errors. 

 LE_XX, CE_XX, and SE_XX (aka LEXX, CEXX, and SEXX, respectively) are also called XX percentiles 

for absolute vertical errors, horizontal radial errors, and spherical radial errors, respectively.  XX 

is expressed as an integer greater than zero and less than 100. 

Standard Deviation – The square root of the variance of a random variable.  A measure of deviation or 

dispersion about the random variable’s mean-value. 
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State Vector - A vector of parameters or variables that describe a system’s state. 

State Vector Error - A vector of errors corresponding to an estimate of a state vector relative to a 

(typically unknown) true state vector; a random vector of errors, or random error vector. 

Uncertainty – A lack of certainty; limited knowledge; unknown or imperfect information.  In terms of 

NSG applications, more general than the concepts of errors and accuracy, but sometimes used 

informally as a synonym.  Applies to predicted accuracy but not to empirical (sample-based) accuracy. 

Uncorrelated Error - At an intuitive level, an error that is statically unrelated to all other relevant errors.  

More precisely, if two random variables represent two uncorrelated errors (about their respective 

mean-values), their covariance and their corresponding correlation coefficient are zero.  A random 

variable is uncorrelated (with itself) from one realization to the next by definition. This latter property is 

also true for the random variables making up random vectors, stochastic processes, and random fields.  

However, these three representations typically include correlated errors within the same realization.   

Uncorrelated Values - Values (of random variables or errors) which are statistically unrelated. [f] This is 

represented for two random variables by their covariance with a value of zero. 

Variance - The measure of the dispersion of a random variable about its mean-value, also the standard 

deviation squared. [b] 

Vertical Error - As applied to geospatial measurements and processes, vertical error is a signed and one 

dimensional (linear) error value typically observed in the direction of the 𝑧-axis of a local right-handed 

coordinate system where the 𝑥, 𝑦 plane is defined as tangent to the defined reference surface at the 

point of origin and the 𝑧-axis is normal to the 𝑥, 𝑦 plane and positive in the up direction. 
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 Accuracy Validation Pseudo-code 

This Appendix contains pseudo-code to perform Validation of Accuracy Requirements.  It performs the 

entire validation process per Sections 4.1/5.1 given the appropriate inputs as documented below. 

Note that although the pseudo-code (MATLAB) may appear somewhat complicated/detailed, the 

underlying algorithm is not.  The majority of the code involves accommodating optional inputs, error 

checking and warnings associated with the inputs, and formatting the output which includes plots.  The 

code is literally a “drop in” to a MATLAB capability.  Also, the pseudo-code makes use of another 

pseudo-code function “OrderedStatisticsBestEstimate” which computes the least-upper-bound and best 

estimate of the appropriate percentile using order statistics.  This function is documented in Appendix C 

of TGD 2b.  

 

Although they can be overridden by optional inputs, important defaults values used in the following 

pseudo-code are 90% for the level of the (radial error random variable) percentile, 90% for the 

confidence–level of the percentile’s least-upper-bound, and the use of a one-sided confidence interval 

to compute the least-upper-bound.  Also, recall that the radial error percentile can correspond to either 

vertical, horizontal, or (3d) radial error.  The corresponding percentile is equivalent to LE_XX, CE_XX, and 

SE_XX, respectively, at the XX probability or percentile-level. 

 

In addition, following the pseudo-code are examples of function calls with corresponding inputs and 

computed outputs. 

B.1 Pseudo-Code 

function AccuracyValidation(errVal,varargin) 

  
%%%%% The "AccuracyValidation" function validates the accuracy of a set of 
%%%%% error samples or values (errVal) supplied by the user. 
%%%%%  
%%%%% This function is described in the document "Accuracy and Predicted 
%%%%% Accuracy in the NSG: Specification and Validation; Technical Guidance 
%%%%% Document (TGD) 2c". 
%%%%%  
%%%%% Inputs: errVal = the error samples or values supplied by the user. 
%%%%%                  This variable is a matrix consisting of n (number of 
%%%%%                  samples) rows and 1, 2, or 3 columns resulting in 
%%%%%                  the validation of the vertical, horizontal (radial), 
%%%%%                  or 3d radial error, respectively.  This input is 
%%%%%                  required and is always the first input into this 
%%%%%                  function.  If a three column matrix is supplied all 
%%%%%                  three (vertical, horizontal (radial), and 3d radial) 
%%%%%                  accuracy validation calculations will be performed. 
%%%%%  
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%%%%%         varargin = this a variable number of inputs that could 
%%%%%                    entered into this function.  The list of possible 
%%%%%                    inputs follows.  None of these variables are 
%%%%%                    required as inputs because the funtion has default 
%%%%%                    values set.  After each possible input definition 
%%%%%                    below will be how the input should be called for 
%%%%%                    use. 
%%%%% 
%%%%%                    percentile (probability) level (prob) = the 
%%%%%                       percentile value corresponding to x sub p.  The 
%%%%%                       percentile has three possible values: 50, 90, 
%%%%%                       or 95 percent.  90 percent is the default 
%%%%%                       value that will be used if the percentile is 
%%%%%                       not set or is not set to one of the three 
%%%%%                       values above.  To set the percentile value the 
%%%%%                       user would enter "'Percentile',90". 
%%%%%  
%%%%%                    confidence level (confid) = the confidence level 
%%%%%                       that applies to either the one-sided or 
%%%%%                       two-sided confidence interval.  The confidence 
%%%%%                       has three possible values: 50, 90, or 95 
%%%%%                       percent.  90 percent is the default value that 
%%%%%                       will be used if the confidence value is not 
%%%%%                       set or is not set to one of the three values 
%%%%%                       above.  To set the confidence value the user 
%%%%%                       would enter "'Confidence',90". 
%%%%%  
%%%%%                    type of lub (lubType) = specifies if the one-sided 
%%%%%                       or two-sided lub calculation will be performed. 
%%%%%                       One-sided is the default type that will be used 
%%%%%                       if the type is not set or is not set 1 or 2. 
%%%%%                       To set the lub type the user would enter  
%%%%%                       "'lub',1". 
%%%%%  
%%%%%                    spec for percentile level (XXspec) = value that 
%%%%%                       the least-upper-bound (lub) must be less than 
%%%%%                       for validation.  If this value is not entered 
%%%%%                       this function cannot determine if the error 
%%%%%                       samples pass validation.  The spec level can be 
%%%%%                       set for the LE (vertical), CE (horizontal 
%%%%%                       radial), and SE (3d radial) test values.  All 
%%%%%                       values can be set and only the value 
%%%%%                       corresponding to the test being performed will 
%%%%%                       be used.  To set the spec level the user would 
%%%%%                       enter "'LEspec',5.5". 
%%%%%  
%%%%%                    error bound for radial errors (XXmax) = this 
%%%%%                       value is used to pervent very large outliers. 
%%%%%                       The error bound level can be set for the LE max 
%%%%%                       (vertical), CE max (horizontal radial), and SE 
%%%%%                       max (3d radial) test values.  All values can be 
%%%%%                       set and only the value corresponding to the 
%%%%%                       test being performed will be used.  To set the 
%%%%%                       error bound level the user would enter 
%%%%%                       "'LEmax',6". 
%%%%%  
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%%%%%                    minimum number of i.i.d. error samples (minSamp) = 
%%%%%                       minimum number of independent sample values for 
%%%%%                       testing validation as specified for the current 
%%%%%                       system/process being validated.  To set the 
%%%%%                       minimum number of i.i.d. error samples value 
%%%%%                       the user would enter "'MinSamples',50". 
%%%%%  
%%%%% Outputs: Statements of the results are printed to the Command Window. 
%%%%%          The use of the Ordered Statistics function as found in 
%%%%%          "Accuracy and Predicted Accuracy in the NSG: Sample 
%%%%%          Statistics; Technical Guidance Document TGD 2b Section 4: 
%%%%%          Order Statistics Appendix C" was used to obtain the values 
%%%%%          printed in those statements and the values are: 
%%%%%          The best estimate position and value for each validation 
%%%%%          test corresponds to the the k** and y sub k** values. 
%%%%%          The least-upper-bound (lub) position and value correspond to 
%%%%%          the k^ and y sub k^ for the one-sided test.  For the 
%%%%%          two-sided test the values correspond to k+r and y sub k+r. 
%%%%%  
%%%%%          Figures of sample error values, least-upper-bound, and the 
%%%%%          best estimate. 

  
%%%%% CHECKING INPUTS 
%%% Checks that the error sample value matrix is oriented correctly. 
errSize = size(errVal);             % checks size of error value matrix 
if errSize(1) < errSize(2)          % compares number of rows to columns 
    errVal  = transpose(errVal);    % transposes error value matrix 
end                                 % ends loop comparing rows and columns 
if size(errVal,2) > 3               % checks number of error components 
    fprintf('\n\nThis Accuracy Validation function does not handle data ') 
    fprintf('sets larger than 3d.\n\n') % prints statement to command window 
    return                          % exits accuracy validation function 
end                                 % ends loop checking error components 
if size(errVal,1) < 50              % checks number of error sample values 
    fprintf('\n\nWarning: The number of Error Samples entered ') 
    fprintf('(%i) is smaller than the recommended number ',size(errVal,1)) 
    fprintf('of 50.\n')             % prints statement to command window 
end                                 % ends loop checking number of values 

  
numSamp = size(errVal,1);           % number of error samples being validated 
fprintf('\n\nThe current Accuracy Validation activity is validating ') 
fprintf('%i samples.\n',numSamp)    % prints statement to command window 
testFlag    = size(errVal,2);       % flag for validation tests to perform 

  
%%% Checking optional input items. 
prob    = 90;                       % default value for percentile level 
confid  = 90;                       % default value for confidence level 
lubType = 1;                        % default value for lub type 
LEspec  = [];                       % creates variable for LE spec value 
CEspec  = [];                       % creates variable for CE spec value 
SEspec  = [];                       % creates variable for SE spec value 
LEmax   = [];                       % creates variable for LE spec max value 
CEmax   = [];                       % creates variable for CE spec max value 
SEmax   = [];                       % creates variable for SE spec max value 
minSamp = [];                       % creates variable for min num samples 
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if nargin > 1                       % checks optional inputs were entered 
    for n = 1:2:nargin-2            % starts loop to cycle through inputs 
        if strcmp(varargin{n},'Percentile') % checks if setting percentile 
            if isnumeric(varargin{n+1}) % checks entered value is a number 
                if varargin{n+1} == 50 ||... 
                   varargin{n+1} == 90 ||... 
                   varargin{n+1} == 95  % checks entered value is option 
                    prob    = varargin{n+1};    % updates percentile value 
                end                 % ends loop checking entered options 
            end                     % ends loop checking entered value 
        elseif strcmp(varargin{n},'Confidence') %checks if setting confidence 
            if isnumeric(varargin{n+1}) % checks entered value is a number 
                if varargin{n+1} == 50 ||... 
                   varargin{n+1} == 90 ||... 
                   varargin{n+1} == 95  % checks entered value is option 
                    confid  = varargin{n+1};    % updates confidence value 
                end                 % ends loop checking entered options 
            end                     % ends loop checking entered value 
        elseif strcmp(varargin{n},'lub')    % checks if lub type is being set 
            if isnumeric(varargin{n+1})     % checks entered value is number 
                if varargin{n+1} == 1 ||... 
                   varargin{n+1} == 2   % checks entered value is option 
                    lubType = varargin{n+1};    % updates lub type 
                end                 % ends loop checking entered options 
            end                     % ends loop checking entered value 
        elseif strcmp(varargin{n},'LEspec') % checks if LE spec is being set 
            if isnumeric(varargin{n+1})     % checks entered value is number 
                LEspec  = varargin{n+1};    % LE spec value 
            end                     % ends loop checking entered value 
        elseif strcmp(varargin{n},'CEspec') % checks if CE spec is being set 
            if isnumeric(varargin{n+1}) % checks entered value is a number 
                CEspec  = varargin{n+1};    % CE spec value 
            end                     % ends loop checking entered value 
        elseif strcmp(varargin{n},'SEspec') % checks if SE spec is being set 
            if isnumeric(varargin{n+1})     % checks entered value is number 
                SEspec  = varargin{n+1};    % SE spec value 
            end                     % ends loop checking entered value 
        elseif strcmp(varargin{n},'LEmax')  % checks LE max error bound 
            if isnumeric(varargin{n+1})     % checks entered value is number 
                LEmax   = varargin{n+1};    % LE max error bound value 
            end                     % ends loop checking entered value 
        elseif strcmp(varargin{n},'CEmax')  % checks CE max error bound 
            if isnumeric(varargin{n+1})     % checks entered value is number 
                CEmax   = varargin{n+1};    % CE max error bound value 
            end                     % ends loop checking entered value 
        elseif strcmp(varargin{n},'SEmax')  % checks SE max error bound 
            if isnumeric(varargin{n+1})     % checks entered value is number 
                SEmax   = varargin{n+1};    % SE max error bound value 
            end                     % ends loop checking entered value 
        elseif strcmp(varargin{n},'MinSamples') %checks min number of samples 
            if isnumeric(varargin{n+1})     % checks entered value is number 
                minSamp = varargin{n+1};    % min number of error samples 
            end                     % ends loop checking entered value 
        end                         % ends loop checking provided inputs 
    end                             % ends loop cycling through inputs 
end                                 % ends loop checking for optional inputs 
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fprintf('The Percentile (Probability) Level being used ') 
fprintf('is %i%%',prob)             % prints statement to command window 
if prob == 90                       % checks probability level being used 
    fprintf(' (default).\n')        % prints statement to command window 
else                                % checks probability level being used 
    fprintf('.\n')                  % prints statement to command window 
end                                 % ends loop checking probability level 
fprintf('The Confidence Level being used ') 
fprintf('is %i%%',confid)           % prints statement to command window 
if confid == 90                     % checks confidence level being used 
    fprintf(' (default).\n')        % prints statement to command window 
else                                % checks confidence level being used 
    fprintf('.\n')                  % prints statement to command window 
end                                 % ends loop checking confidence level 
fprintf('The lub (least-upper-bound) type being used ') 
fprintf('is %i-sided',lubType)      % prints statement to command window 
if lubType == 1                     % checks lub type being used 
    fprintf(' (default).\n')        % prints statement to command window 
else                                % checks lub type being used 
    fprintf('.\n')                  % prints statement to command window 
end                                 % ends loop checking lub type 
if isempty(minSamp) == 0            % checks min number of error samples 
    if numSamp < minSamp            % checks if number of samples is met 
        fprintf('WARNING: The number of error samples (%i) ',numSamp) 
        fprintf('is less than the minimum number of i.i.d. error ') 
        fprintf('samples (%i).\n',minSamp)  % prints statement 
    end                             % ends loop checking number of samples 
end                                 % ends loop checking min number of i.i.d. 
 

%%%%% CHECKING INPUTS 

  
%%% Use of the Ordered Statistics function as found in "Accuracy and 
%%% Predicted Accuracy in the NSG: Sample Statistics; Technical Guidance 
%%% Document TGD 2b Section 4: Order Statistics Appendix C".  Example 
%%% function call: 
%%% [bestEst,oneSided,twoSided,y] =  
%%%%                    OrderedStatisticsBestEstimate(prob,confid,verErr); 

  
while testFlag == 1 || testFlag == 3    % checks if validating vertical 
    if testFlag == 1                % checks if validating only vertical 
        fprintf('\n\nThe vertical component of the sample errors will ') 
        fprintf('be analyzed (validated).\n\n') % prints statement 
        verErr  = abs(errVal);      % vertical error value 
    else                            % checks if validating all 3 components 
        fprintf('\n\nThe vertical, horizontal (radial), and 3d radial ') 
        fprintf('errors will be analyzed (validated).\n\n') %prints statement 
        verErr  = abs(errVal(:,3)); % vertical error values 
    end                             % ends loop checking number of components 

     
    fprintf('\n***NOTE: The following results for the vertical error ') 
    fprintf('samples are from the Ordered Statistics function found in ') 
    fprintf('Appendix C of TGD 2b.***\nThese results contain detailed ') 
    fprintf('information and the user can go directly to the final ') 
    fprintf('validation results below if so desired.\n') % prints statement 
    [bestEst,oneSided,twoSided,y] = ... % calls Ordered Statistics function 
        OrderedStatisticsBestEstimate(prob,confid,verErr); 
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    %%% Printing ordered sample number under ordered sample values 
    for m = 1:numSamp               % starts loop to cycle through samples 
        for n = 1:length(sprintf('%.2f',y(m)))-... 
                  length(sprintf('%i',m)) % starts loop to print spaces 
            fprintf(' ')            % prints spaces to command window 
        end                         % ends loop printing spaces 
        fprintf('%i\t\t',m)         % prints sample number 
    end                             % ends loop cycling thorugh samples 
    fprintf('\n')                   % prints statement to command window 
    fprintf('***NOTE: This concludes the results from the Ordered ') 
    fprintf('Statistics function found in Appendix C of TGD 2b.***\n') 

     
    %%% Prints validation results 
    fprintf('\n\nFINAL VALIDATION RESULTS: The following results are for ') 
    fprintf('Vertical Accuracy Validation.\n') % prints statement 
    verBestEst  = bestEst(end);     % vertical error best estimate value 
    verBestEstp = bestEst(end-1);   % vertical error best estimate position 
    if lubType == 1                 % checks lub type being used 
        if oneSided(2) == 0         % checks if lub was found 
            fprintf('WARNING: Not enough samples to compute lub for ') 
            fprintf('vertical validation.\n')   % prints statement 
            fprintf('Computations have been stopped for the ') 
            fprintf('vertical analysis.\n') % prints statement 
            break                   % breaks from while loop  
        elseif oneSided(2) == numSamp   % checks if lub is last  
            fprintf('WARNING: The lub value was computed using the ') 
            fprintf('last ordered sample.\n')   % prints statement 
        end                         % ends loop checking lub value 
        verLUB  = oneSided(3);      % vertical least-upper-bound 
        verLUBp = oneSided(2);      % vertical least-upper-bound position 
    else                            % action when two-sided lub being used 
        if twoSided(4) == 0         % checks if lub was found 
            fprintf('WARNING: Not enough samples to compute lub value ') 
            fprintf('for vertical validation.\n')   % prints statement 
            fprintf('Computations have been stopped for the ') 
            fprintf('vertical analysis.\n') % prints statement 
            break                   % breaks from while loop  
        elseif twoSided(4) == numSamp   % checks if lub is last  
            fprintf('WARNING: The lub value for vertical validation ') 
            fprintf('was computed using the last ordered sample.\n') 
        end                         % ends loop checking lub value 
        verLUB  = twoSided(5);      % vertical least-upper-bound 
        verLUBp = twoSided(4);      % vertical least-upper-bound position 
    end                             % ends loop checking lub type 

     
    if isempty(LEspec) && isempty(LEmax) % checks spec values 
        fprintf('No spec value or max spec value were supplied for ') 
        fprintf('vertical validation.\n') % prints statement 
    elseif isempty(LEspec) == 0 && isempty(LEmax) % checks spec values 
        if verLUB < LEspec          % spec value test 
            fprintf('The vertical error samples PASS validation for the ') 
            fprintf('spec value test.\n') % prints statement 
            fprintf('\tLeast-Upper-Bound Value: %.2f\t\t',verLUB) 
            fprintf('Spec Value: %.2f\n',LEspec) % prints statement 
            fprintf('No max spec value was supplied for vertical ') 
            fprintf('validation.\n') % prints statement to command window 
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        else                        % spec value test 
            fprintf('The vertical error samples FAIL validation for the ') 
            fprintf('spec value test.\n') % prints statement 
            fprintf('\tLeast-Upper-Bound Value: %.2f\t\t',verLUB) 
            fprintf('Spec Value: %.2f\n',LEspec) % prints statement 
            fprintf('No max spec value was supplied for vertical ') 
            fprintf('validation.\n') % prints statement to command window 
        end                         % ends loop for spec value test 
    elseif isempty(LEspec) && isempty(LEmax) == 0 % checks spec values 
        if max(verErr) < LEmax      % max spec value test 
            fprintf('The vertical error samples PASS validation for the ') 
            fprintf('max spec value test.\n') % prints statement 
            fprintf('\tMax Error Sample: %.2f\t\t\t\t',max(verErr)) 
            fprintf('Max Spec Value: %.2f\n',LEmax) % prints statement 
            fprintf('No spec value was supplied for vertical ') 
            fprintf('validation.\n') % prints statement to command window 
        else                        % max spec value test 
            fprintf('The vertical error samples FAIL validation for the ') 
            fprintf('max spec value test.\n') % prints statement 
            loc = find(verErr > LEmax); % values greater than LE max spec 
            fprintf('\tVertical error ') % prints statement to command window 
            if length(loc) == 1     % checks number of locations found 
                fprintf('sample %i ',loc) 
                fprintf('(%.2f) is ',verErr(loc))   % prints statement 
            else                    % action when multiple locations found 
                fprintf('samples ') % prints statement to command window 
                if length(loc) == 2 % checks length of location vector 
                    fprintf('%i (%.2f) ',loc(1),verErr(loc(1))) 
                    fprintf('and %i (%.2f) are ',loc(2),verErr(loc(2)))          
                else                % checks length of location vector 
                    for n = 1:length(loc)   % starts loop to cycle locations 
                        if n == length(loc) % checks current location 
                            fprintf('and %i ',loc(n))   % prints statement 
                            fprintf('(%.2f) are ',verErr(loc(n))) 
                        else        % checks current location position 
                            fprintf('%i ',loc(n))       % prints statement 
                            fprintf('(%.2f), ',verErr(loc(n))) 
                        end         % ends checking current location position 
                    end             % ends loop cycling thorugh locations 
                end                 % ends loop checking length of loc vector 
            end                     % ends loop checking number of locations 
 

            fprintf('greater than the LE max spec value (%i of ',length(loc)) 
            fprintf('%i samples).\n',length(verErr))    % prints statement 
            fprintf('No spec value was supplied for vertical validation.\n') 
        end                         % ends loop for max spec value test 
    else                            % checks spec values 
        if verLUB < LEspec &&... 
           max(verErr) < LEmax      % checks that vertical passes validation 
            fprintf('The vertical error samples PASS validation for the ') 
            fprintf('spec value test and the max spec value test.\n') 
            fprintf('\tLeast-Upper-Bound Value: %.2f\t\t',verLUB) 
            fprintf('Spec Value: %.2f\n',LEspec) % prints statement 
            fprintf('\tMax Error Sample: %.2f\t\t\t\t',max(verErr)) 
            fprintf('Max Spec Value: %.2f\n',LEmax) % prints statement 
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        elseif verLUB > LEspec &&... 
               max(verErr) > LEmax  % action when vertical fails validation 
            fprintf('The vertical error samples FAIL validation due to ') 
            fprintf('the spec value test and max spec value test.\n') 
            fprintf('\tLeast-Upper-Bound Value: %.2f\t\t',verLUB) 
            fprintf('Spec Value: %.2f\n',LEspec) % prints statement 
            loc = find(verErr > LEmax); % values greater than LE max spec 
            fprintf('\tVertical error ') % prints statement to command window 
            if length(loc) == 1     % checks number of locations found 
                fprintf('sample %i ',loc) 
                fprintf('(%.2f) is ',verErr(loc))   % prints statement 
            else                    % action when multiple locations found 
                fprintf('samples ') % prints statement to command window 
                if length(loc) == 2 % checks length of location vector 
                    fprintf('%i (%.2f) ',loc(1),verErr(loc(1))) 
                    fprintf('and %i (%.2f) are ',loc(2),verErr(loc(2)))          
                else                % checks length of location vector 
                    for n = 1:length(loc)   % starts loop to cycle locations 
                        if n == length(loc) % checks current location 
                            fprintf('and %i ',loc(n))   % prints statement 
                            fprintf('(%.2f) are ',verErr(loc(n))) 
                        else        % checks current location position 
                            fprintf('%i ',loc(n))       % prints statement 
                            fprintf('(%.2f), ',verErr(loc(n))) 
                        end         % ends checking current location position 
                    end             % ends loop cycling thorugh locations 
                end                 % ends loop checking length of loc vector 
            end                     % ends loop checking number of locations 
            fprintf('greater than the LE max spec value (%i of ',length(loc)) 
            fprintf('%i samples).\n',length(verErr))    % prints statement 
        elseif verLUB > LEspec      % checks validation test 
            fprintf('The vertical error samples FAIL validation due to ') 
            fprintf('the spec value test.\n')   % prints statement 
            fprintf('\tLeast-Upper-Bound Value: %.2f\t\t',verLUB) 
            fprintf('Spec Value: %.2f\n',LEspec) % prints statement 
            fprintf('\tMax Error Sample: %.2f\t\t\t\t',max(verErr)) 
            fprintf('Max Spec Value: %.2f\n',LEmax) % prints statement 
 

        elseif max(verErr) > LEmax  % checks validation test 
            fprintf('The vertical error samples FAIL validation due to ') 
            fprintf('the max spec value test.\n')   % prints statement 
            fprintf('\tMax Error Sample: %.2f\t\t\t\t',max(verErr)) 
            fprintf('Max Spec Value: %.2f\n',LEmax) % prints statement 
            loc = find(verErr > LEmax); % values greater than LE max spec 
            fprintf('\tVertical error ') % prints statement to command window 
            if length(loc) == 1     % checks number of locations found 
                fprintf('sample %i ',loc) 
                fprintf('(%.2f) is ',verErr(loc))   % prints statement 
            else                    % action when multiple locations found 
                fprintf('samples ') % prints statement to command window 
                if length(loc) == 2 % checks length of location vector 
                    fprintf('%i (%.2f) ',loc(1),verErr(loc(1))) 
                    fprintf('and %i (%.2f) are ',loc(2),verErr(loc(2)))          
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                else                % checks length of location vector 
                    for n = 1:length(loc)   % starts loop to cycle locations 
                        if n == length(loc) % checks current location 
                            fprintf('and %i ',loc(n))   % prints statement 
                            fprintf('(%.2f) are ',verErr(loc(n))) 
                        else        % checks current location position 
                            fprintf('%i ',loc(n))       % prints statement 
                            fprintf('(%.2f), ',verErr(loc(n))) 
                        end         % ends checking current location position 
                    end             % ends loop cycling thorugh locations 
                end                 % ends loop checking length of loc vector 
            end                     % ends loop checking number of locations 
            fprintf('greater than the LE max spec value (%i of ',length(loc)) 
            fprintf('%i samples).\n',length(verErr))    % prints statement 
        end                         % ends loop checking vertical validation 
    end                             % ends loop checking spec values 

     
    fprintf('The lub value occurs at ordered sample %i of ',verLUBp) 
    fprintf('%i, corresponding to a value of %.2f\n',numSamp,verLUB) 
    fprintf('The Best Estimate of the percentile is at ') 
    fprintf('ordered sample ')      % prints statement to command window 
    if mod(verBestEstp,1) == 0      % checks if best estimate position 
        fprintf('%i of %i, corresponding to a ',verBestEstp,numSamp) 
        fprintf('value of %.2f\n',verBestEst)   % prints statment 
    else                            % checks if best estimate position 
        fprintf('%.1f of %i, corresponding to a ',verBestEstp,numSamp) 
        fprintf('value of %.2f\n',verBestEst)   % prints statment 
    end                             % ends loop checking best estimate 
    fprintf('\n\n')                 % prints statement to command window 

     
    %%% Plotting vertical values 
    legFlag = 1;                    % creates legend flag for current figure 
    figure(1)                       % makes figure current 
    clf                             % clears current figure 
    hold on                         % turns hold on for current figure 
    plot(1:numSamp,verErr,'b.')     % plots vertical error values 
    plot([0 numSamp],verLUB*[1 1],'m-') % plots vertical least-upper-bound 
    plot([0 numSamp],verBestEst*[1 1],'r--')    % plots best estimate value 
 

    if isempty(LEspec) == 0         % checks LE spec value was supplied 
        plot([0 numSamp],LEspec*[1 1],'k-') % plots LE spec value 
        legFlag = 2;                % updates legend flag for current figure 
    end                             % ends loop checking LE spec value 
    title(['Vertical Error Sample (Probability Level: ' num2str(prob)... 
           '%;Confidence Level: ' num2str(confid) '%)'])    % adds title 
    xlabel('Sample Number')         % adds label to x-axis 
    ylabel('Error Value')           % adds label to y-axis 
    if legFlag == 1                 % checks legend flag value 
        legend('Sample Value','Least-upper-bound',... 
               'Best Estimate')     % adds legend to figure 
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    elseif legFlag == 2             % checks legend flag value 
        legend('Sample Value','Least-upper-bound',... 
               'Best Estimate','Spec Value')    % adds legend to figure 
    end                             % ends loop checking legend flag 
    hold off                        % turns hold off for current figure 
    drawnow                         % forces display to update 
    break                           % breaks from while loop  
end                                 % ends loop validating vertical 

  
while testFlag == 2 || testFlag == 3 % checks if validating horizontal 
    if testFlag == 2                % checks if validating only horizontal 
        fprintf('\n\nThe horizontal (radial) component of the sample ') 
        fprintf('errors will be analyzed (validated).\n') % prints statement 
    end                             % ends loop checking number of components 

     
    fprintf('\n***NOTE: The following results for the horizontal (radial) ') 
    fprintf('error samples are from the Ordered Statistics function found ') 
    fprintf('in Appendix C of TGD 2b.***\nThese results contain detailed ') 
    fprintf('information and the user can go directly to the final ') 
    fprintf('validation results below if so desired.\n') % prints statement 
    horErr  = sqrt(errVal(:,1).^2+errVal(:,2).^2);  % horizontal error value 
    [bestEst,oneSided,twoSided,y] = ... % calls Ordered Statistics function 
                    OrderedStatisticsBestEstimate(prob,confid,horErr); 
    %%% Printing ordered sample number under ordered sample values 
    for m = 1:numSamp               % starts loop to cycle through samples 
        for n = 1:length(sprintf('%.2f',y(m)))-... 
                length(sprintf('%i',m)) % starts loop to print spaces 
            fprintf(' ')            % prints spaces to command window 
        end                         % ends loop printing spaces 
        fprintf('%i\t\t',m)         % prints sample number 
    end                             % ends loop cycling thorugh samples 
    fprintf('\n')                   % prints statement to command window 
    fprintf('***NOTE: This concludes the results from the Ordered ') 
    fprintf('Statistics function found in Appendix C of TGD 2b.***\n') 

     
    %%% Prints validation results 
    fprintf('\n\nFINAL VALIDATION RESULTS: The following results are for ') 
    fprintf('Horizontal (radial) Accuracy Validation.\n') % prints statement 
    horBestEst  = bestEst(end);     % horizontal radial best estimate value 
    horBestEstp = bestEst(end-1);   % horizontal best estimate position 
 

    if lubType == 1                 % checks lub type being used 
        if oneSided(2) == 0         % checks if lub was found 
            fprintf('WARNING: Not enough samples to compute lub value ') 
            fprintf('for horizontal (radial) validation.\n') 
            fprintf('Computations have been stopped for the horizontal ') 
            fprintf('(radial) analysis.\n') % prints statement 
            break                   % breaks from while loop  
        elseif oneSided(2) == numSamp   % checks if lub is last  
            fprintf('WARNING: The lub value for horizontal (radial) ') 
            fprintf('validation was computed using the last ordered ') 
            fprintf('sample.\n')    % prints statement to command window 
        end                         % ends loop checking lub value 
        horLUB  = oneSided(3);      % horizontal radial least-upper-bound 
        horLUBp = oneSided(2);      % horizontal least-upper-bound position 
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    else                            % action when two-sided lub being used 
        if twoSided(4) == 0         % checks if lub was found 
            fprintf('WARNING: Not enough samples to compute lub value ') 
            fprintf('for horizontal (radial) validation.\n') 
            fprintf('Computations have been stopped for the horizontal ') 
            fprintf('(radial) analysis.\n') % prints statement 
            break                   % breaks from while loop  
        elseif twoSided(4) == numSamp   % checks if lub is last  
            fprintf('WARNING: The lub value for horizontal (radial) ') 
            fprintf('validation was computed using the last ordered ') 
            fprintf('sample.\n')    % prints statement to command window 
        end                         % ends loop checking lub value 
        horLUB  = twoSided(5);      % horizontal radial least-upper-bound 
        horLUBp = twoSided(4);      % horizontal least-upper-bound position 
    end                             % ends loop checking lub type 

     
    if isempty(CEspec) && isempty(CEmax) % checks spec values 
        fprintf('No spec value or max spec value were supplied for ') 
        fprintf('horizontal (radial) validation.\n') % prints statement 
    elseif isempty(CEspec) == 0 && isempty(CEmax) % checks spec values 
        if horLUB < CEspec          % spec value test 
            fprintf('The horizontal (radial) error samples PASS validation ') 
            fprintf('for the spec value test.\n') % prints statement 
            fprintf('\tLeast-Upper-Bound Value: %.2f\t\t',horLUB) 
            fprintf('Spec Value: %.2f\n',CEspec) 
            fprintf('No max spec value was supplied for horizontal ') 
            fprintf('(radial) validation.\n') % prints statement 
        else                        % spec value test 
            fprintf('The horizontal (radial) error samples FAIL validation ') 
            fprintf('for the spec value test.\n') % prints statement 
            fprintf('\tLeast-Upper-Bound Value: %.2f\t\t',horLUB) 
            fprintf('Spec Value: %.2f\n',CEspec) % prints statement 
            fprintf('No max spec value was supplied for horizontal ') 
            fprintf('(radial) validation.\n') % prints statement 
        end                         % ends loop checking spec value test 
 

    elseif isempty(CEspec) && isempty(CEmax) == 0 % checks spec values 
        if max(horErr) < CEmax      % max spec value test 
            fprintf('The horizontal (radial) error samples PASS validation ') 
            fprintf('for the max spec value test.\n') % prints statement 
            fprintf('\tMax Error Sample: %.2f\t\t\t\t',max(horErr)) 
            fprintf('Max Spec Value: %.2f\n',CEmax) % prints statement 
            fprintf('No spec value was supplied for horizontal (radial) ') 
            fprintf('validation.\n') % prints statement to command window 
        else                        % max spec value 
            fprintf('The horizontal (radial) error samples FAIL validation ') 
            fprintf('for the max spec value test.\n') % prints statement 
            loc = find(horErr > CEmax); % values greater than CE max spec 
            fprintf('\tHorizontal (radial) error ') % prints statement 
            if length(loc) == 1     % checks number of locations found 
                fprintf('sample %i ',loc) 
                fprintf('(%.2f) is ',horErr(loc))   % prints statement 
            else                    % action when multiple locations found 
                fprintf('samples ') % prints statement to command window 
                if length(loc) == 2 % checks length of location vector 
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                    fprintf('%i (%.2f) ',loc(1),horErr(loc(1))) 
                    fprintf('and %i (%.2f) are ',loc(2),horErr(loc(2)))          
                else                % checks length of location vector 
                    for n = 1:length(loc)   % starts loop to cycle locations 
                        if n == length(loc) % checks current location 
                            fprintf('and %i ',loc(n))   % prints statement 
                            fprintf('(%.2f) are ',horErr(loc(n))) 
                        else        % checks current location position 
                            fprintf('%i ',loc(n))       % prints statement 
                            fprintf('(%.2f), ',horErr(loc(n))) 
                        end         % ends checking current location position 
                    end             % ends loop cycling thorugh locations 
                end                 % ends loop checking length of loc vector 
            end                     % ends loop checking number of locations 
            fprintf('greater than the CE max spec value (%i of ',length(loc)) 
            fprintf('%i samples).\n',length(horErr))    % prints statement 
            fprintf('No spec value was supplied for horizontal (radial) ') 
            fprintf('validation.\n') % prints statement to command window 
        end                         % ends loop checking max spec value test 
    else                            % checks spec values 
        if horLUB < CEspec &&... 
           max(horErr) < CEmax     % checks that horizontal passes validation 
            fprintf('The horizontal (radial) error samples PASS validation ') 
            fprintf('for the spec value test and the max spec value test.\n') 
            fprintf('\tLeast-Upper-Bound Value: %.2f\t\t',horLUB) 
            fprintf('Spec Value: %.2f\n',CEspec) 
            fprintf('\tMax Error Sample: %.2f\t\t\t\t',max(horErr)) 
            fprintf('Max Spec Value: %.2f\n',CEmax) % prints statement 
        elseif horLUB > CEspec &&... 
               max(horErr) > CEmax  % action when horizontal fails validation 
            fprintf('The horizontal (radial) error samples FAIL validation ') 
            fprintf('due to the spec value test and max spec value test.\n') 
            fprintf('\tLeast-Upper-Bound Value: %.2f\t\t',horLUB) 
            fprintf('Spec Value: %.2f\n',CEspec) % prints statement 
            loc = find(horErr > CEmax); % values greater than CE max spec 
            fprintf('\tHorizontal (radial) error ') % prints statement 
 

            if length(loc) == 1     % checks number of locations found 
                fprintf('sample %i ',loc) 
                fprintf('(%.2f) is ',horErr(loc))   % prints statement 
            else                    % action when multiple locations found 
                fprintf('samples ') % prints statement to command window 
                if length(loc) == 2 % checks length of location vector 
                    fprintf('%i (%.2f) ',loc(1),horErr(loc(1))) 
                    fprintf('and %i (%.2f) are ',loc(2),horErr(loc(2)))          
                else                % checks length of location vector 
                    for n = 1:length(loc)   % starts loop to cycle locations 
                        if n == length(loc) % checks current location 
                            fprintf('and %i ',loc(n))   % prints statement 
                            fprintf('(%.2f) are ',horErr(loc(n))) 
                        else        % checks current location position 
                            fprintf('%i ',loc(n))       % prints statement 
                            fprintf('(%.2f), ',horErr(loc(n))) 
                        end         % ends checking current location position 
                    end             % ends loop cycling thorugh locations 
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                end                 % ends loop checking length of loc vector 
            end                     % ends loop checking number of locations 
            fprintf('greater than the CE max spec value (%i of ',length(loc)) 
            fprintf('%i samples).\n',length(horErr))    % prints statement 
        elseif horLUB > CEspec      % checks validation test 
            fprintf('The horizontal (radial) error samples FAIL validation ') 
            fprintf('due to the spec value test.\n') % prints statement 
            fprintf('\tLeast-Upper-Bound Value: %.2f\t\t',horLUB) 
            fprintf('Spec Value: %.2f\n',CEspec) 
            fprintf('\tMax Error Sample: %.2f\t\t\t\t',max(horErr)) 
            fprintf('Max Spec Value: %.2f\n',CEmax) 
        elseif max(horErr) > CEmax  % checks validation test 
            fprintf('The horizontal (radial) error samples FAIL validation ') 
            fprintf('due to the max spec value test.\n') % prints statement 
            fprintf('\tMax Error Sample: %.2f\t\t\t\t',max(horErr)) 
            fprintf('Max Spec Value: %.2f\n',CEmax) 
            loc = find(horErr > CEmax); % values greater than CE max spec 
            fprintf('\tHorizontal (radial) error ') % prints statement 
            if length(loc) == 1     % checks number of locations found 
                fprintf('sample %i ',loc) 
                fprintf('(%.2f) is ',horErr(loc))   % prints statement 
            else                    % action when multiple locations found 
                fprintf('samples ') % prints statement to command window 
                if length(loc) == 2 % checks length of location vector 
                    fprintf('%i (%.2f) ',loc(1),horErr(loc(1))) 
                    fprintf('and %i (%.2f) are ',loc(2),horErr(loc(2)))          
                else                % checks length of location vector 
                    for n = 1:length(loc)   % starts loop to cycle locations 
                        if n == length(loc) % checks current location 
                            fprintf('and %i ',loc(n))   % prints statement 
                            fprintf('(%.2f) are ',horErr(loc(n))) 
                        else        % checks current location position 
                            fprintf('%i ',loc(n))       % prints statement 
                            fprintf('(%.2f), ',horErr(loc(n))) 
                        end         % ends checking current location position 
                    end             % ends loop cycling thorugh locations 
                end                 % ends loop checking length of loc vector 
            end                     % ends loop checking number of locations 
            fprintf('greater than the CE max spec value (%i of ',length(loc)) 
            fprintf('%i samples).\n',length(horErr))    % prints statement 
        end                         % ends loop checking vertical validation 
    end                             % ends loop checking spec values 

     
    fprintf('The lub value occurs at ordered sample %i of ',horLUBp) 
    fprintf('%i, corresponding to a value of %.2f\n',numSamp,horLUB) 
    fprintf('The Best Estimate of the percentile is at ordered sample ') 
    if mod(horBestEstp,1) == 0      % checks best estimate position 
        fprintf('%i of %i, corresponding to a value ',horBestEstp,numSamp) 
        fprintf('of %.2f\n',horBestEst) % prints statment to command window 
    else                            % checks best estimate position 
        fprintf('%.1f of %i, corresponding to a value ',horBestEstp,numSamp) 
        fprintf('of %.2f\n',horBestEst) % prints statment to command window 
    end                             % ends loop checking best estimate 
    fprintf('\n\n')                 % prints statement to command window 
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    %%% Plotting horizontal values 
    legFlag = 1;                    % creates legend flag for current figure 
    figure(2)                       % makes figure current 
    clf                             % clears current figure 
    hold on                         % turns hold on for current figure 
    plot(1:numSamp,horErr,'b.')     % plots horizontal error values 
    plot([0 numSamp],horLUB*[1 1],'m-') % plots horizontal radial lub 
    plot([0 numSamp],horBestEst*[1 1],'r--') % plots best estimate value 
    if isempty(CEspec) == 0         % checks CE spec value was supplied 
        plot([0 numSamp],CEspec*[1 1],'k-') % plots CE spec value 
        legFlag = 2;                % updates legend flag for current figure 
    end                             % ends loop checking CE spec value 
    title(['Horizontal (Radial) Error Sample (Probability Level: ' ... 
           num2str(prob) '%;Confidence Level: ' num2str(confid) '%)']) 
    xlabel('Sample Number')         % adds label to x-axis 
    ylabel('Error Value')           % adds label to y-axis 
    if legFlag == 1                 % checks legend flag value 
        legend('Sample Value','Least-upper-bound','Best Estimate') 
    elseif legFlag == 2             % checks legend flag value 
        legend('Sample Value','Least-upper-bound','Best Estimate',... 
               'Spec Value')        % adds legend to figure 
    end                             % ends loop checking legend flag 
    hold off                        % turns hold off for current figure 
    drawnow                         % forces display to update 
    break                           % breaks from while loop 
end                                 % ends loop validating horizontal 

  
while testFlag == 3                 % checks if validating 3d radial 
    fprintf('\n***NOTE: The following results for the 3d radial error ') 
    fprintf('samples are from the Ordered Statistics function found in ') 
    fprintf('Appendix C of TGD 2b.***\nThese results contain detailed ') 
    fprintf('information and the user can go directly to the final ') 
    fprintf('validation results below if so desired.\n') 
    radErr  = sqrt(errVal(:,1).^2+errVal(:,2).^2+errVal(:,3).^2); % 3d errors 
    [bestEst,oneSided,twoSided,y] = ... % calls Ordered Statistics function 
                        OrderedStatisticsBestEstimate(prob,confid,radErr); 
 

    %%% Printing ordered sample number under ordered sample values 
    for m = 1:numSamp               % starts loop to cycle through samples 
        for n = 1:length(sprintf('%.2f',y(m)))-... 
                length(sprintf('%i',m)) % starts loop to print spaces 
            fprintf(' ')            % prints spaces to command window 
        end                         % ends loop printing spaces 
        fprintf('%i\t\t',m)         % prints sample number 
    end                             % ends loop cycling thorugh samples 
    fprintf('\n')                   % prints statement to command window 
    fprintf('***NOTE: This concludes the results from the Ordered ') 
    fprintf('Statistics function found in Appendix C of TGD 2b.***\n') 

     
    %%% Prints validation results 
    fprintf('\n\nFINAL VALIDATION RESULTS: The following results are for ') 
    fprintf('3d Radial Accuracy Validation.\n') % prints statement 
    radBestEst  = bestEst(end);     % 3d radial best estimate value 
    radBestEstp = bestEst(end-1);   % 3d radial best estimate position 
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    if lubType == 1                 % checks lub type being used 
        if oneSided(2) == 0         % checks if lub was found 
            fprintf('WARNING: Not enough samples to compute lub value ') 
            fprintf('for 3d radial validation.\n') 
            fprintf('Computations have been stopped for the 3d radial ') 
            fprintf('analysis.\n')  % prints statement to command window 
            break                   % breaks from while loop  
        elseif oneSided(2) == numSamp   % checks if lub is last  
            fprintf('WARNING: The lub value for 3d radial validation ') 
            fprintf('was computed using the last ordered sample.\n') 
        end                         % ends loop checking lub value 
        radLUB  = oneSided(3);      % 3d radial least-upper-bound 
        radLUBp = oneSided(2);      % 3d radial least-upper-bound position 
    else                            % action when two-sided lub being used 
        if twoSided(4) == 0         % checks if lub was found 
            fprintf('WARNING: Not enough samples to compute lub value ') 
            fprintf('for 3d radial validation.\n') 
            fprintf('Computations have been stopped for the 3d radial ') 
            fprintf('analysis.\n')  % prints statement to command window 
            break                   % breaks from while loop  
        elseif twoSided(4) == numSamp   % checks if lub is last  
            fprintf('WARNING: The lub value for 3d radial validation ') 
            fprintf('was computed using the last ordered sample.\n') 
        end                         % ends loop checking lub value 
        radLUB  = twoSided(5);      % 3d radial least-upper-bound 
        radLUBp = twoSided(4);      % 3d radial least-upper-bound position 
    end                             % ends loop checking lub type 

     
    if isempty(SEspec) && isempty(SEmax) % checks spec values 
        fprintf('No spec value or max spec value were supplied for 3d ') 
        fprintf('radial validation.\n') % prints statement to command window 
 

    elseif isempty(SEspec) == 0 && isempty(SEmax) % checks spec values 
        if radLUB < SEspec          % spec value test 
            fprintf('The 3d radial error samples PASS validation for the ') 
            fprintf('spec value test.\n') % prints statement 
            fprintf('\tLeast-Upper-Bound Value: %.2f\t\t',radLUB) 
            fprintf('Spec Value: %.2f\n',SEspec) 
            fprintf('No max spec value was supplied for 3d radial ') 
            fprintf('validation.\n') % prints statement to command window 
        else                        % spec value test 
            fprintf('The 3d radial error samples FAIL validation for the ') 
            fprintf('spec value test.\n') % prints statement 
            fprintf('\tLeast-Upper-Bound Value: %.2f\t\t',radLUB) 
            fprintf('Spec Value: %.2f\n',SEspec) 
            fprintf('No max spec value was supplied for 3d radial ') 
            fprintf('validation.\n') % prints statement to command window 
        end                         % ends loop checks spec value test 
    elseif isempty(SEspec) && isempty(SEmax) == 0 % checks spec values 
        if max(radErr) < SEmax      % max spec value test 
            fprintf('The 3d radial error samples PASS validation for the ') 
            fprintf('max spec value test.\n') % prints statement 
            fprintf('\tMax Error Sample: %.2f\t\t\t\t',max(radErr)) 
            fprintf('Max Spec Value: %.2f\n',SEmax) % prints statement 
            fprintf('No spec value was supplied for 3d radial ') 
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            fprintf('validation.\n') % prints statement to command window 
        else                        % max spec value test 
            fprintf('The 3d radial error samples FAIL validation for the ') 
            fprintf('max spec value test.\n') % prints statement 
            loc = find(radErr > SEmax); % values greater than SE max spec 
            fprintf('\t3d radial error ') % prints statement 
            if length(loc) == 1     % checks number of locations found 
                fprintf('sample %i ',loc) % prints statement 
                fprintf('(%.2f) is ',radErr(loc))   % prints statement 
            else                    % action when multiple locations found 
                fprintf('samples ') % prints statement to command window 
                if length(loc) == 2 % checks length of location vector 
                    fprintf('%i (%.2f) ',loc(1),radErr(loc(1))) 
                    fprintf('and %i (%.2f) are ',loc(2),radErr(loc(2))) 
                else                % checks length of location vector 
                    for n = 1:length(loc)   % starts loop to cycle locations 
                        if n == length(loc) % checks current location 
                            fprintf('and %i ',loc(n))   % prints statement 
                            fprintf('(%.2f) are ',radErr(loc(n))) 
                        else        % checks current location position 
                            fprintf('%i ',loc(n))       % prints statement 
                            fprintf('(%.2f), ',radErr(loc(n))) 
                        end         % ends checking current location position 
                    end             % ends loop cycling thorugh locations 
                end                 % ends loop checking length of loc vector 
            end                     % ends loop checking number of locations 
            fprintf('greater than the SE max spec value (%i of ',length(loc)) 
            fprintf('%i samples).\n',length(radErr))    % prints statement 
            fprintf('No spec value was supplied for 3d radial validation.\n') 
        end                         % ends loop checking max spec value test 
 

    else                            % checks spec values 
        if radLUB < SEspec &&... 
           max(radErr) < SEmax     % checks that 3d radial passes validation 
            fprintf('The 3d radial error samples PASS validation for the ') 
            fprintf('spec value test and the max spec value test.\n') 
            fprintf('\tLeast-Upper-Bound Value: %.2f\t\t',radLUB) 
            fprintf('Spec Value: %.2f\n',SEspec) % prints statement 
            fprintf('\tMax Error Sample: %.2f\t\t\t\t',max(radErr)) 
            fprintf('Max Spec Value: %.2f\n',SEmax) % prints statement 
        elseif radLUB > SEspec &&... 
               max(radErr) > SEmax  % action when horizontal fails validation 
            fprintf('The 3d radial error samples FAIL validation due to ') 
            fprintf('the spec value test and max spec value test.\n') 
            fprintf('\tLeast-Upper-Bound Value: %.2f\t\t',radLUB) 
            fprintf('Spec Value: %.2f\n',SEspec) % prints statement 
            loc = find(radErr > SEmax); % values greater than SE max spec 
            fprintf('\t3d radial error ') % prints statement 
            if length(loc) == 1     % checks number of locations found 
                fprintf('sample %i ',loc) 
                fprintf('(%.2f) is ',radErr(loc))   % prints statement 
            else                    % action when multiple locations found 
                fprintf('samples ') % prints statement to command window 
                if length(loc) == 2 % checks length of location vector 
                    fprintf('%i (%.2f) ',loc(1),radErr(loc(1))) 
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                    fprintf('and %i (%.2f) are ',loc(2),radErr(loc(2))) 
                else                % checks length of location vector 
                    for n = 1:length(loc)   % starts loop to cycle locations 
                        if n == length(loc) % checks current location 
                            fprintf('and %i ',loc(n))   % prints statement 
                            fprintf('(%.2f) are ',radErr(loc(n))) 
                        else        % checks current location position 
                            fprintf('%i ',loc(n))       % prints statement 
                            fprintf('(%.2f), ',radErr(loc(n))) 
                        end         % ends checking current location position 
                    end             % ends loop cycling thorugh locations 
                end                 % ends loop checking length of loc vector 
            end                     % ends loop checking number of locations 
            fprintf('greater than the SE max spec value (%i of ',length(loc)) 
            fprintf('%i samples).\n',length(radErr))    % prints statement 
        elseif radLUB > SEspec      % checks validation test 
            fprintf('The 3d radial error samples FAIL validation due to ') 
            fprintf('the spec value test.\n')   % prints statement 
            fprintf('\tLeast-Upper-Bound Value: %.2f\t\t',radLUB) 
            fprintf('Spec Value: %.2f\n',SEspec) % prints statement 
            fprintf('\tMax Error Sample: %.2f\t\t\t\t',max(radErr)) 
            fprintf('Max Spec Value: %.2f\n',SEmax) % prints statement 
        elseif max(radErr) > SEmax  % checks validation test 
            fprintf('The 3d radial error samples FAIL validation due to ') 
            fprintf('the max spec value test.\n')   % prints statement 
            fprintf('\tMax Error Sample: %.2f\t\t\t\t',max(radErr)) 
            fprintf('Max Spec Value: %.2f\n',SEmax) % prints statement 
            loc = find(radErr > SEmax); % values greater than SE max spec 
            fprintf('\t3d radial error ') % prints statement 
 

            if length(loc) == 1     % checks number of locations found 
                fprintf('sample %i ',loc) 
                fprintf('(%.2f) is ',radErr(loc))   % prints statement 
            else                    % action when multiple locations found 
                fprintf('samples ') % prints statement to command window 
                if length(loc) == 2 % checks length of location vector 
                    fprintf('%i (%.2f) ',loc(1),radErr(loc(1))) 
                    fprintf('and %i (%.2f) are ',loc(2),radErr(loc(2))) 
                else                % checks length of location vector 
                    for n = 1:length(loc)   % starts loop to cycle locations 
                        if n == length(loc) % checks current location 
                            fprintf('and %i ',loc(n))   % prints statement 
                            fprintf('(%.2f) are ',radErr(loc(n))) 
                        else        % checks current location position 
                            fprintf('%i ',loc(n))       % prints statement 
                            fprintf('(%.2f), ',radErr(loc(n))) 
                        end         % ends checking current location position 
                    end             % ends loop cycling thorugh locations 
                end                 % ends loop checking length of loc vector 
            end                     % ends loop checking number of locations 
            fprintf('greater than the SE max spec value (%i of ',length(loc)) 
            fprintf('%i samples).\n',length(radErr))    % prints statement 
        end                         % ends loop checking vertical validation 
    end                             % ends loop checking spec values 
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    fprintf('The lub value occurs at ordered sample %i of ',radLUBp) 
    fprintf('%i, corresponding to a value of %.2f\n',numSamp,radLUB) 
    fprintf('The Best Estimate of the percentile is at ordered sample ') 
    if mod(radBestEstp,1) == 0      % checks best estimate position 
        fprintf('%i of %i, corresponding to a value ',radBestEstp,numSamp) 
        fprintf('of %.2f\n',radBestEst) % prints statment to command window 
    else                            % checks best estimate position 
        fprintf('%.1f of %i, corresponding to a value ',radBestEstp,numSamp) 
        fprintf('of %.2f\n',radBestEst) % prints statment to command window 
    end                             % ends loop checking best estimate 

     
    %%% Plotting 3d radial values 
    legFlag = 1;                    % creates legend flag for current figure 
    figure(3)                       % makes figure current 
    clf                             % clears current figure 
    hold on                         % turns hold on for current figure 
    plot(1:numSamp,radErr,'b.')     % plots 3d radial error values 
    plot([0 numSamp],radLUB*[1 1],'m-') % plots 3d radial least-upper-bound 
    plot([0 numSamp],radBestEst*[1 1],'r--') % plots best estimate value 
    title(['3d Radial Error Sample (Probability Level: ' num2str(prob) ... 
           '%;Confidence Level: ' num2str(confid) '%)']) % adds title 
    if isempty(SEspec) == 0         % checks SE spec value was supplied 
        plot([0 numSamp],SEspec*[1 1],'k-') % plots SE spec value 
        legFlag = 2;                % updates legend flag for figure 
    end                             % ends loop checking SE spec value 
    xlabel('Sample Number')         % adds label to x-axis 
    ylabel('Error Value')           % adds label to y-axis 
 

    if legFlag == 1                 % checks legend flag value 
        legend('Sample Value','Least-upper-bound',... 
               'Best Estimate')     % adds legend to figure 
    elseif legFlag == 2             % checks legend flag value 
        legend('Sample Value','Least-upper-bound','Best Estimate',... 
               'Spec Value')        % adds legend to figure 
    end                             % ends loop checking legend flag 
    hold off                        % turns hold off for current figure 
    drawnow                         % forces display to update 
    break                           % breaks from while loop 
end                                 % ends loop validating 3d radial 

 

B.2 Examples 

B.2.1 Example 1: Demonstration of the Minimum Number of Function Inputs to the Accuracy 

Validation Function 

Example 1:  Create a vector of 100 indpendent normally distributed error sample values corresponding 
to a possible set of vertical errors.  Each random error has an a priori mean-value of zero and a standard 
deviation of 1.  This example will demonstrate the minimum number of function inputs to the Accuracy 
Validation function and the resulting outputs. 
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errVals = randn(100,1);       % creates random error values; simple Gaussian 

%N(0,1) distribution used for simplicity; this generation of random error 

values is not part of the validation pseudo-code per se. 

 

Error values resulting from the above command.  The values are a 100-by-1 vector, but displayed like this 

to take up less space on the page. 

Sample 
Number 

Sample 
Value 

Sample 
Number 

Sample 
Value 

Sample 
Number 

Sample 
Value 

Sample 
Number 

Sample 
Value 

1 0.5377 26 1.0347 51 -0.8637 76 -1.4023 

2 1.8339 27 0.7269 52 0.0774 77 -1.4224 

3 -2.2588 28 -0.3034 53 -1.2141 78 0.4882 

4 0.8622 29 0.2939 54 -1.1135 79 -0.1774 

5 0.3188 30 -0.7873 55 -0.0068 80 -0.1961 

6 -1.3077 31 0.8884 56 1.5326 81 1.4193 

7 -0.4336 32 -1.1471 57 -0.7697 82 0.2916 

8 0.3426 33 -1.0689 58 0.3714 83 0.1978 

9 3.5784 34 -0.8095 59 -0.2256 84 1.5877 

10 2.7694 35 -2.9443 60 1.1174 85 -0.8045 

11 -1.3499 36 1.4384 61 -1.0891 86 0.6966 

12 3.0349 37 0.3252 62 0.0326 87 0.8351 

13 0.7254 38 -0.7549 63 0.5525 88 -0.2437 

14 -0.0631 39 1.3703 64 1.1006 89 0.2157 

15 0.7147 40 -1.7115 65 1.5442 90 -1.1658 

16 -0.2050 41 -0.1022 66 0.0859 91 -1.1480 

17 -0.1241 42 -0.2414 67 -1.4916 92 0.1049 

18 1.4897 43 0.3192 68 -0.7423 93 0.7223 

19 1.4090 44 0.3129 69 -1.0616 94 2.5855 

20 1.4172 45 -0.8649 70 2.3505 95 -0.6669 

21 0.6715 46 -0.0301 71 -0.6156 96 0.1873 

22 -1.2075 47 -0.1649 72 0.7481 97 -0.0825 

23 0.7172 48 0.6277 73 -0.1924 98 -1.9330 

24 1.6302 49 1.0933 74 0.8886 99 -0.4390 

25 0.4889 50 1.1093 75 -0.7648 100 -1.7947 
 

AccuracyValidation(errVals); % calls accuracy validation function 

The following is the results from the above call of the Accuracy Validation function. 

The current Accuracy Validation activity is validating 100 samples. 

The Percentile (Probability) Level being used is 90% (default). 

The Confidence Level being used is 90% (default). 

The lub (least-upper-bound) type being used is 1-sided (default). 

 

The vertical component of the sample errors will be analyzed (validated). 
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***NOTE: The following results for the vertical error samples are from the Ordered Statistics function 

found in Appendix C of TGD 2b.*** 

 

These results contain detailed information and the user can go directly to the final validation results 

below if so desired. 

The number of samples is 100 

The k* location value is 90  Sample Value corresponding to the k* location is 1.71 

The k** location value is 90.0  Sample Value corresponding to the k** location is 1.71 

 

The k^ location value is 95  Sample Value corresponding to the k^ location is 2.35 

The k^ confidence value is 93.32% 

The one-sided confidence interval color code is GREEN 

 

The k location value is 85  Sample Value corresponding to the k location is 1.49 

The k+r location value is 95  Sample Value corresponding to the k+r location is 2.35 

The confidence interval range is 10.10% 

Determining desired confidence interval was successful. 

The actual confidence percent contained within the computed confidence interval is 90.00% 

The two-sided confidence interval color code is GREEN 

 

The ordered sample values are:  Again shown this way to conserve space. 

Sample 
Number 

Sample 
Value 

Sample 
Number 

Sample 
Value 

Sample 
Number 

Sample 
Value 

Sample 
Number 

Sample 
Value 

1 0.0068 26 0.3188 51 0.7697 76 1.3499 

2 0.0301 27 0.3192 52 0.7873 77 1.3703 

3 0.0326 28 0.3252 53 0.8045 78 1.4023 

4 0.0631 29 0.3426 54 0.8095 79 1.4090 

5 0.0774 30 0.3714 55 0.8351 80 1.4172 

6 0.0825 31 0.4336 56 0.8622 81 1.4193 

7 0.0859 32 0.4390 57 0.8637 82 1.4224 

8 0.1022 33 0.4882 58 0.8649 83 1.4384 

9 0.1049 34 0.4889 59 0.8884 84 1.4897 

10 0.1241 35 0.5377 60 0.8886 85 1.4916 

11 0.1649 36 0.5525 61 1.0347 86 1.5326 

12 0.1774 37 0.6156 62 1.0616 87 1.5442 

13 0.1873 38 0.6277 63 1.0689 88 1.5877 

14 0.1924 39 0.6669 64 1.0891 89 1.6302 

15 0.1961 40 0.6715 65 1.0933 90 1.7115 

16 0.1978 41 0.6966 66 1.1006 91 1.7947 
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17 0.2050 42 0.7147 67 1.1093 92 1.8339 

18 0.2157 43 0.7172 68 1.1135 93 1.9330 

19 0.2256 44 0.7223 69 1.1174 94 2.2588 

20 0.2414 45 0.7254 70 1.1471 95 2.3505 

21 0.2437 46 0.7269 71 1.1480 96 2.5855 

22 0.2916 47 0.7423 72 1.1658 97 2.7694 

23 0.2939 48 0.7481 73 1.2075 98 2.9443 

24 0.3034 49 0.7549 74 1.2141 99 3.0349 

25 0.3129 50 0.7648 75 1.3077 100 3.5784 

 

***NOTE: This concludes the results from the Ordered Statistics function found in Appendix C of TGD 

2b.*** 

 

FINAL VALIDATION RESULTS: The following results are for Vertical Accuracy Validation. 

No spec value was supplied for vertical validation. 

The lub value occurs at ordered sample 95 of 100, corresponding to a value of 2.35 

The Best Estimate of the percentile is at ordered sample 90 of 100, corresponding to a value of 1.71 

No max spec value was supplied for vertical validation. 
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B.2.2 Example 2: Demonstration of the Maximum Number of Function Inputs to the Accuracy 

Validation Function 

Example 2:  Create a set pf 100 independent 3d (x,y,z) error sample values, each component 
corresponds to a mean-zero Gaussian distribution with standard deviation of 1.  A given 3d sample value 
is used to generate corresponding vertical, horizontal, and 3d radial errors.   This example will 
demonstrate the maximum number of function inputs to the Accuracy Validation function and the 
resulting outputs. 
 
errVals = randn(100,3);       % creates random error values 

 

Error values resulting from the above command.  The values are a 100-by-1 3d “vector” (actually a 100-

by-3 matrix), but displayed like this to take up less space on the page.  Table is distributed over two 

pages. 

Sample 
Number 

Sample Value Sample 
Number 

Sample Value 

X Y Z X Y Z 

1 0.183432 -0.39813 -0.81931 51 -0.02809 0.984227 -0.36527 

2 -0.25973 0.256436 0.967954 52 0.140359 0.993107 -0.46341 

3 -1.35479 0.220025 0.030349 53 0.237586 0.668209 0.19499 

4 -1.15744 -1.71144 1.351097 54 -0.67155 -0.065 -0.06695 

5 -0.76199 -1.20576 -1.08637 55 -1.045 -0.6201 -0.52153 

6 -0.2503 -1.77291 0.240265 56 0.965767 0.224104 0.1271 

7 -1.64876 -0.07249 -1.04618 57 -0.21976 -0.46614 2.113018 

8 -0.18199 -1.72111 0.618718 58 1.414536 -0.33209 0.541281 

9 0.615687 0.701881 1.305034 59 -0.92419 0.924815 -0.65509 

10 -0.37667 -1.00547 1.023491 60 -0.59414 1.447026 -0.86953 

11 -0.69804 -1.10643 -2.11538 61 1.421275 0.595832 -0.2389 

12 0.304122 1.79056 0.681729 62 1.407608 2.053271 -1.57599 

13 1.10108 2.162384 0.008709 63 -1.029 -1.52925 1.825751 

14 -0.44661 -0.81928 0.334273 64 0.206512 0.022688 0.204267 

15 -0.46671 -0.03705 -0.54741 65 1.341111 0.095285 -1.1634 

16 -1.43582 1.963004 -1.65098 66 1.332717 1.614526 0.12061 

17 -0.97772 -0.54027 0.892793 67 -1.28489 0.501273 -1.44352 

18 0.605895 1.717504 -0.50706 68 1.618376 -0.32384 0.582346 

19 -0.11365 0.819808 -0.32979 69 0.661644 0.554217 -0.18147 

20 0.764562 0.055521 0.168354 70 0.227346 0.642443 0.04201 

21 0.669897 -0.35313 2.53674 71 -0.22558 0.182625 0.361842 

22 0.375784 1.693149 2.293627 72 -0.96599 -2.02748 0.853715 

23 0.766653 0.71105 -1.31866 73 0.095018 1.023081 -0.80977 

24 1.523472 -0.63276 -0.47413 74 -0.25673 -3.49154 -1.46705 

25 0.576824 0.392726 0.987382 75 2.310131 0.10949 -0.1039 

26 0.425973 -0.87796 -2.07303 76 0.19006 -1.55133 -0.82291 
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27 -0.04293 0.148945 1.244026 77 -0.1734 -0.35511 0.424981 

28 -1.24226 1.531878 -0.31524 78 -0.01403 1.398557 -1.85468 

29 -0.50495 0.531848 1.399294 79 -0.61274 -0.51347 0.858575 

30 0.325851 -0.75967 -0.87988 80 2.0718 1.91718 0.306394 

31 -1.11142 0.347984 -0.92247 81 0.637024 0.778411 -1.11156 

32 0.468184 -0.6978 2.314403 82 0.074894 -0.24646 -0.31724 

33 0.322613 2.019315 0.588013 83 1.123267 -0.90353 0.837863 

34 0.100021 -1.7937 -0.30977 84 -0.03313 -0.4959 2.426465 

35 0.301435 -0.65951 -1.03296 85 -0.09775 0.374495 -0.35109 

36 0.023824 0.771453 1.103351 86 -0.55662 -2.37053 1.381962 

37 -0.02205 -0.82034 0.342109 87 -0.6155 0.615062 -0.86066 

38 -0.00876 0.017888 -2.26399 88 1.604553 0.279465 0.20689 

39 0.929455 0.654535 -0.90329 89 0.768495 0.818865 -0.2075 

40 -0.09043 1.257699 2.970029 90 0.086933 2.047507 0.340257 

41 -2.64115 -0.92708 -0.01177 91 1.704359 -0.32374 -0.49811 

42 -0.48615 -0.16988 -1.99954 92 0.023634 -0.98054 -1.42139 

43 0.19597 -0.47167 -0.88802 93 0.290043 1.179634 -0.27077 

44 0.959722 -0.11423 -0.4199 94 -1.4199 0.894583 0.439663 

45 1.380324 0.369487 0.694578 95 0.475274 -0.14293 -0.50614 

46 -0.94146 -0.61862 -0.16275 96 -1.44732 -0.59347 -0.18435 

47 0.760868 0.800115 0.101577 97 -0.98828 0.248917 0.401999 

48 0.23792 0.426696 -0.01786 98 0.94938 -1.12978 0.539228 

49 -0.20837 -0.47233 -0.96033 99 0.351224 0.066095 -0.73359 

50 0.024739 0.275952 1.172806 100 -0.87228 -0.63792 -0.26837 

 
% calls accuracy validation function 
AccuracyValidation(errVals,'Percentile',90,'Confidence',90,'lub',1,... 
                   'LEspec',3,'CEspec',4,'SEspec',5,... 
                   'LEmax',12,'CEmax',16,'SEmax',20,'MinSamples',100); 

 

The following is the results from the above call of the Accuracy Validation function. 

The current Accuracy Validation activity is validating 100 samples. 

The Percentile (Probability) Level being used is 90% (default). 

The Confidence Level being used is 90% (default). 

The lub (least-upper-bound) type being used is 1-sided (default). 

 

The vertical, horizontal (radial), and 3d radial errors will be analyzed (validated). 

 

***NOTE: The following results for the vertical error samples are from the Ordered Statistics function 

found in Appendix C of TGD 2b.*** 
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These results contain detailed information and the user can go directly to the final validation results 

below if so desired. 

 

The number of samples is 100 

The k* location value is 90  Sample Value corresponding to the k* location is 1.85 

The k** location value is 90.0  Sample Value corresponding to the k** location is 1.85 

 

The k^ location value is 95  Sample Value corresponding to the k^ location is 2.26 

The k^ confidence value is 93.32% 

The one-sided confidence interval color code is GREEN 

 

The k location value is 85  Sample Value corresponding to the k location is 1.44 

The k+r location value is 95  Sample Value corresponding to the k+r location is 2.26 

The confidence interval range is 10.10% 

Determining desired confidence interval was successful. 

The actual confidence percent contained within the computed confidence interval is 90.00% 

The two-sided confidence interval color code is GREEN 

 

The ordered sample values are:  Again shown this way to conserve space. Table is distributed over two 

pages. 

Sample 
Number 

Sample 
Value 

Sample 
Number 

Sample 
Value 

Sample 
Number 

Sample 
Value 

Sample 
Number 

Sample 
Value 

1 0.008709 26 0.317241 51 0.681729 76 1.163396 

2 0.011766 27 0.329791 52 0.694578 77 1.172806 

3 0.017858 28 0.334273 53 0.733593 78 1.244026 

4 0.030349 29 0.340257 54 0.809772 79 1.305034 

5 0.04201 30 0.342109 55 0.819308 80 1.318661 

6 0.066947 31 0.351089 56 0.822913 81 1.351097 

7 0.101577 32 0.361842 57 0.837863 82 1.381962 

8 0.103896 33 0.365273 58 0.853715 83 1.399294 

9 0.12061 34 0.401999 59 0.858575 84 1.421395 

10 0.1271 35 0.419902 60 0.860655 85 1.443518 

11 0.162753 36 0.424981 61 0.869529 86 1.467051 

12 0.168354 37 0.439663 62 0.879881 87 1.575987 

13 0.181465 38 0.463411 63 0.888015 88 1.650984 

14 0.184348 39 0.474135 64 0.892793 89 1.825751 

15 0.19499 40 0.498112 65 0.903286 90 1.854684 

16 0.204267 41 0.506144 66 0.922472 91 1.999539 

17 0.20689 42 0.507056 67 0.960327 92 2.073026 

18 0.207497 43 0.52153 68 0.967954 93 2.113018 

19 0.238898 44 0.539228 69 0.987382 94 2.115382 
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20 0.240265 45 0.541281 70 1.023491 95 2.263993 

21 0.268372 46 0.547413 71 1.032964 96 2.293627 

22 0.270774 47 0.582346 72 1.046181 97 2.314403 

23 0.306394 48 0.588013 73 1.086374 98 2.426465 

24 0.309768 49 0.618718 74 1.103351 99 2.53674 

25 0.31524 50 0.655085 75 1.111562 100 2.970029 

 

***NOTE: This concludes the results from the Ordered Statistics function found in Appendix C of TGD 

2b.*** 

 

FINAL VALIDATION RESULTS: The following results are for Vertical Accuracy Validation. 

The vertical error samples PASS validation for the spec value test and the max spec value test. 

 Least-Upper-Bound Value: 2.26  Spec Value: 3.00 

 Max Error Sample: 2.97   Max Spec Value: 12.00 

The lub value occurs at ordered sample 95 of 100, corresponding to a value of 2.26 

The Best Estimate of the percentile is at ordered sample 90 of 100, corresponding to a value of 1.85 

 

 
 

***NOTE: The following results for the horizontal (radial) error samples are from the Ordered Statistics 

function found in Appendix C of TGD 2b.*** 
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These results contain detailed information and the user can go directly to the final validation results 

below if so desired. 

The number of samples is 100 

The k* location value is 90  Sample Value corresponding to the k* location is 2.07 

The k** location value is 90.0  Sample Value corresponding to the k** location is 2.07 

 

The k^ location value is 95  Sample Value corresponding to the k^ location is 2.43 

The k^ confidence value is 93.32% 

The one-sided confidence interval color code is GREEN 

 

The k location value is 85  Sample Value corresponding to the k location is 1.82 

The k+r location value is 95  Sample Value corresponding to the k+r location is 2.43 

The confidence interval range is 10.10% 

Determining desired confidence interval was successful. 

The actual confidence percent contained within the computed confidence interval is 90.00% 

The two-sided confidence interval color code is GREEN 

 

The ordered sample values are:  Again shown this way to conserve space. Table is distributed over two 

pages. 

Sample 
Number 

Sample 
Value 

Sample 
Number 

Sample 
Value 

Sample 
Number 

Sample 
Value 

Sample 
Number 

Sample 
Value 

1 0.019917 26 0.757271 51 1.117057 76 1.650356 

2 0.155009 27 0.766575 52 1.122998 77 1.650458 

3 0.207755 28 0.771821 53 1.126516 78 1.678211 

4 0.257583 29 0.79944 54 1.136795 79 1.73071 

5 0.277059 30 0.820638 55 1.164626 80 1.734349 

6 0.290235 31 0.826603 56 1.214768 81 1.734834 

7 0.357389 32 0.827649 57 1.215133 82 1.790495 

8 0.364993 33 0.840313 58 1.260946 83 1.796486 

9 0.387041 34 0.863092 59 1.307442 84 1.816204 

10 0.395187 35 0.870138 60 1.308218 85 1.821243 

11 0.438352 36 0.933099 61 1.344492 86 1.843217 

12 0.468181 37 0.933653 62 1.372539 87 1.972275 

13 0.488544 38 0.966497 63 1.379213 88 2.044923 

14 0.4963 39 0.975843 64 1.398628 89 2.049351 

15 0.497008 40 0.980827 65 1.426348 90 2.066083 

16 0.510763 41 0.984628 66 1.428921 91 2.093521 

17 0.514976 42 0.991427 67 1.441561 92 2.245841 

18 0.515341 43 1.002977 68 1.452995 93 2.312725 

19 0.516252 44 1.005844 69 1.475713 94 2.426578 

20 0.674687 45 1.019145 70 1.541116 95 2.43207 
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21 0.681484 46 1.027484 71 1.562931 96 2.435005 

22 0.697825 47 1.045633 72 1.564253 97 2.489434 

23 0.70919 48 1.073708 73 1.56427 98 2.79913 

24 0.72513 49 1.080659 74 1.628709 99 2.822753 

25 0.733375 50 1.104131 75 1.649653 100 3.500968 

 

***NOTE: This concludes the results from the Ordered Statistics function found in Appendix C of TGD 

2b.*** 

 

FINAL VALIDATION RESULTS: The following results are for Horizontal (radial) Accuracy Validation. 

The horizontal (radial) error samples PASS validation for the spec value test and the max spec value test. 

 Least-Upper-Bound Value: 2.43  Spec Value: 4.00 

 Max Error Sample: 3.50   Max Spec Value: 16.00 

The lub value occurs at ordered sample 95 of 100, corresponding to a value of 2.43 

The Best Estimate of the percentile is at ordered sample 90 of 100, corresponding to a value of 2.07 
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***NOTE: The following results for the 3d radial error samples are from the Ordered Statistics function 

found in Appendix C of TGD 2b.*** 

 

These results contain detailed information and the user can go directly to the final validation results 

below if so desired. 

The number of samples is 100 

The k* location value is 90  Sample Value corresponding to the k* location is 2.49 

The k** location value is 90.0  Sample Value corresponding to the k** location is 2.49 

 

The k^ location value is 95  Sample Value corresponding to the k^ location is 2.84 

The k^ confidence value is 93.32% 

The one-sided confidence interval color code is GREEN 

 

The k location value is 85  Sample Value corresponding to the k location is 2.40 

The k+r location value is 95  Sample Value corresponding to the k+r location is 2.84 

The confidence interval range is 10.10% 

Determining desired confidence interval was successful. 

The actual confidence percent contained within the computed confidence interval is 90.00% 

The two-sided confidence interval color code is GREEN 

 

The ordered sample values are:  Again shown this way to conserve space. Table is distributed over two 

pages. 

Sample 
Number 

Sample 
Value 

Sample 
Number 

Sample 
Value 

Sample 
Number 

Sample 
Value 

Sample 
Number 

Sample 
Value 

1 0.291354 26 1.104859 51 1.571145 76 2.06479 

2 0.408645 27 1.108793 52 1.575095 77 2.077406 

3 0.46386 28 1.113484 53 1.57983 78 2.096992 

4 0.488871 29 1.138212 54 1.58879 79 2.127785 

5 0.522556 30 1.142007 55 1.604625 80 2.174954 

6 0.580329 31 1.173139 56 1.641796 81 2.264081 

7 0.678 32 1.205087 57 1.667367 82 2.291224 

8 0.682777 33 1.207255 58 1.682919 83 2.315057 

9 0.708869 34 1.209084 59 1.716438 84 2.322932 

10 0.720315 35 1.223874 60 1.726958 85 2.40263 

11 0.735508 36 1.24458 61 1.734847 86 2.426594 

12 0.784844 37 1.253646 62 1.750183 87 2.462232 

13 0.816018 38 1.262073 63 1.766335 88 2.468636 

14 0.881963 39 1.308225 64 1.777962 89 2.476843 

15 0.889092 40 1.322324 65 1.789683 90 2.487223 

16 0.890935 41 1.346511 66 1.792952 91 2.594382 

17 0.929203 42 1.372875 67 1.804928 92 2.647359 
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18 0.991167 43 1.429999 68 1.806544 93 2.799155 

19 0.999541 44 1.451974 69 1.822997 94 2.799833 

20 1.024427 45 1.462375 70 1.837979 95 2.839333 

21 1.034483 46 1.483369 71 1.890511 96 2.875533 

22 1.050198 47 1.485702 72 1.939935 97 2.939509 

23 1.053771 48 1.499097 73 1.954014 98 2.946356 

24 1.090295 49 1.550541 74 1.996491 99 3.226617 

25 1.095564 50 1.559523 75 1.997309 100 3.795921 

 

***NOTE: This concludes the results from the Ordered Statistics function found in Appendix C of TGD 

2b.*** 

 

FINAL VALIDATION RESULTS: The following results are for 3d Radial Accuracy Validation. 

The 3d radial error samples PASS validation for the spec value test and the max spec value test. 

 Least-Upper-Bound Value: 2.84  Spec Value: 5.00 

 Max Error Sample: 3.80    Max Spec Value: 20.00 

The lub value occurs at ordered sample 95 of 100, corresponding to a value of 2.84 

The Best Estimate of the percentile is at ordered sample 90 of 100, corresponding to a value of 2.49 
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 Predicted Accuracy Validation Pseudo-code 

This Appendix contains pseudo-code to perform Validation of Predicted Accuracy Requirements.  It 

performs the entire validation process per Sections 4.2/5.2, given the appropriate inputs as documented 

below.  

Note that although the code may appear somewhat complicated/detailed, the underlying algorithms  is 

not.  The majority of the code involves accommodating optional inputs, error checking and warnings 

associated with the inputs, and formatting the output which includes plots.  The code is literally a “drop 

in” to a MATLAB capability. 

In addition, following the pseudo-code are examples of function calls with corresponding inputs and 

computed outputs. 

C.1 Pseudo-code 

function PredictedAccuracyValidation(errVal,varargin) 

  
%%%%% The "PredictedAccuracyValidation" function validates predicted accuracy  
%%%%% using a set of error samples or values (errVal) and corresponding 
%%%%% predicted error covariance matrices (or their approximate equivalent) 
%%%%% supplied by the user. 
%%%%% 
%%%%% The algorithm/equations corresponding to this function described in 
%%%%% the document "Accuracy and Predicted Accuracy in the NSG: 
%%%%% Specification and Validation; Technical Guidance Document (TGD) 2c". 
%%%%% 
%%%%% Inputs: errVal = the error samples or values supplied by the user. 
%%%%%                  This variable is a matrix consisting of n (number of 
%%%%%                  samples) rows and 1, 2, or 3 columns resulting in 
%%%%%                  the validation of the vertical, horizontal (radial), 
%%%%%                  or 3d radial error, respectively.  This input is 
%%%%%                  required and is always the first input into this 
%%%%%                  function.  If a three column matrix is supplied all 
%%%%%                  three (vertical, horizontal (radial), and 3d radial) 
%%%%%                  accuracy validation calculations will be performed. 
%%%%%                  The minimum number of samples should be 100. 
%%%%% 
%%%%%         varargin = this a variable number of inputs that could be 
%%%%%                    entered into this function.  The list of possible 
%%%%%                    inputs follows.  One of the predicted accuracy 
%%%%%                    options is required as an input.  None of the 
%%%%%                    other variables are required as inputs because the 
%%%%%                    function has default values set.  After each 
%%%%%                    possible input definition below will be how the 
%%%%%                    input should be called for use. 
%%%%% 
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%%%%%                    predicted accuracy covariance (predCov) = the 
%%%%%                       predicted error covariances supplied by the 
%%%%%                       user.  This variable is a matrix consisting of 
%%%%%                       n (number of samples) covariances.  When only 
%%%%%                       the vertical error is being validated this 
%%%%%                       matrix will be a n-by-1 vector of the variance 
%%%%%                       corresponding to the vertical component of the 
%%%%%                       entire covariance matrix.  When the horizontal 
%%%%%                       (radial) error is being validated this matrix 
%%%%%                       will be a 2-by-2-by-n matrix corresponding to 
%%%%%                       the horizontal components of the entire 
%%%%%                       covariance matrix.  Finally, when the 3d radial 
%%%%%                       error is being validated this matrix will be a 
%%%%%                       3-by-3-by-n matrix.  This input is required and 
%%%%%                       is always the second input into this function. 
%%%%%                       If a three column matrix is supplied in 
%%%%%                       variable "errVal" and a 3-by-3-by-n matrix is 
%%%%%                       supplied in this matrix all three (vertical, 
%%%%%                       horizontal (radial), and 3d radial) predicted 
%%%%%                       accuracy validation calculations will be 
%%%%%                       performed.  This is the prefered method for 
%%%%%                       predicted accuracy validation.  To set the 
%%%%%                       predicted accuracy covariance the user would 
%%%%%                       enter: 
%%%%%                       "'PredictedCovariance',[covariance matrix]". 
%%%%% 
%%%%%                    computed predicted scalar accuracy (scalarCov) = 
%%%%%                       the predicted error covariances supplied by the 
%%%%%                       user will be used to calculate the 
%%%%%                       corresponding LE, CE, and SE values.  The error 
%%%%%                       covariance should be of the same format as 
%%%%%                       described above under "predicted accuracy 
%%%%%                       covariance".  To set the computed predicted 
%%%%%                       scalar accuracy the user would enter: 
%%%%%                       "'ComputedScalar',[covariance matrix]". 
%%%%% 
%%%%%                    entered predicted scalar accuracy (scalarVal) = 
%%%%%                       the predicted error values supplied by the user 
%%%%%                       will be a n-by-1 vector of CE90 values.  This 
%%%%%                       option will only be for horizontal (radial) 
%%%%%                       errors at a probability level of 90%.  To set 
%%%%%                       the entered predicted scalar accuracy the user 
%%%%%                       would enter: "'EnteredScalar',[CE90 vector]". 
%%%%% 
%%%%%                    fidelity level (fidLev) = the desired fidelity 
%%%%%                       level for the validation.  The three possible 
%%%%%                       levels are: high, medium, and low.  These 
%%%%%                       levels correspond to the normalized error test 
%%%%%                       tolerance table.  The default value for the 
%%%%%                       fidelity level is high.  If the user does not 
%%%%%                       input a value the default value will be used. 
%%%%%                       To set the fidelity level the user would enter: 
%%%%%                       "'FidelityLevel','medium'". 
%%%%% 
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%%%%%                    minimum number of i.i.d. error samples (minSamp) = 
%%%%%                       minimum number of independent sample values for 
%%%%%                       testing validation as specified for the current 
%%%%%                       system/process being validated.  To set the 
%%%%%                       minimum number of i.i.d. error samples value 
%%%%%                       the user would enter "'MinSamples',50". 
%%%%% 
%%%%%                    normalized error test at 0.999999 probability 
%%%%%                       level (test999999) = optional test at the 
%%%%%                       probability level 0.999999.  To set this option 
%%%%%                       the user would enter "'Test0.999999','on'". 
%%%%%  
%%%%%                    vertical normalized error tolerance (VaccFid) = 
%%%%%                       table of three probability levels (99, 90, and 
%%%%%                       50%) as a function of both the number of 
%%%%%                       samples for the tests (statistical 
%%%%%                       significance), and the applicable level of 
%%%%%                       predicted accuracy fidelity. Table 5.4.2.3 in 
%%%%%                       Section 5.4 of TGD 2c is the default values 
%%%%%                       used unless this optional input is supplied. 
%%%%%                       This input should take the same format as Table 
%%%%%                       5.4.2.3, being a 9-by-4 matrix with columns 
%%%%%                       corresponding to number of samples 400, 100, 
%%%%%                       50, and 25.  The rows correspond to 99, 90, and 
%%%%%                       50% probability levels for the high, medium, 
%%%%%                       and low fidelity levels.  To set this option 
%%%%%                       the user would enter "'VerticalFidelity', 
%%%%%                       [vertical fidelity matrix]". 
%%%%%  
%%%%%                    horizontal normalized error tolerance (HaccFid) = 
%%%%%                       table of three probability levels (99, 90, and 
%%%%%                       50%) as a function of both the number of 
%%%%%                       samples for the tests (statistical 
%%%%%                       significance), and the applicable level of 
%%%%%                       predicted accuracy fidelity. Table 5.4.2.2 in 
%%%%%                       Section 5.4 of TGD 2c is the default values 
%%%%%                       used unless this optional input is supplied. 
%%%%%                       This input should take the same format as Table 
%%%%%                       5.4.2.2, being a 9-by-4 matrix with columns 
%%%%%                       corresponding to number of samples 400, 100, 
%%%%%                       50, and 25.  The rows correspond to 99, 90, and 
%%%%%                       50% probability levels for the high, medium, 
%%%%%                       and low fidelity levels.  To set this option 
%%%%%                       the user would enter "'HorizontalFidelity', 
%%%%%                       [horizontal fidelity matrix]". 
%%%%%  
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%%%%%                    3d radial normalized error tolerance (RaccFid) = 
%%%%%                       table of three probability levels (99, 90, and 
%%%%%                       50%) as a function of both the number of 
%%%%%                       samples for the tests (statistical 
%%%%%                       significance), and the applicable level of 
%%%%%                       predicted accuracy fidelity. Table 5.4.2.4 in 
%%%%%                       Section 5.4 of TGD 2c is the default values 
%%%%%                       used unless this optional input is supplied. 
%%%%%                       This input should take the same format as Table 
%%%%%                       5.4.2.4, being a 9-by-4 matrix with columns 
%%%%%                       corresponding to number of samples 400, 100, 
%%%%%                       50, and 25.  The rows correspond to 99, 90, and 
%%%%%                       50% probability levels for the high, medium, 
%%%%%                       and low fidelity levels.  To set this option 
%%%%%                       the user would enter "'RadialFidelity', 
%%%%%                       [3d radial fidelity matrix]". 
%%%%%  
%%%%% Outputs: Statements of the results are printed to the Command Window. 
%%%%% 
%%%%%          Figures of sample error values vs. predicted percentile 
%%%%%          ellipsoid radial distance are plotted. 

  
%%%%% CHECKING INPUTS 
%%% Checks that the error sample value matrix is oriented correctly. 
errSize = size(errVal);             % checks size of error value matrix 
if errSize(1) < errSize(2)          % compares number of rows to columns 
    errVal  = transpose(errVal);    % transposes error value matrix 
end                                 % ends loop comparing rows and columns 
if size(errVal,2) > 3               % checks number of error components 
    fprintf('\n\nThis Accuracy Validation function does not handle data ') 
    fprintf('sets larger than 3d.\n\n') % prints statement to command window 
    return                          % exits function 
end                                 % ends loop checking error components 
if size(errVal,1) < 25              % checks number of error sample values 
    fprintf('\n\nThe number of Error Samples entered (%i ',size(errVal,1)) 
    fprintf('< 25) is not large enough for calculations to be ') 
    fprintf('performed.\n')         % prints statement to command window 
    return                          % exits function 
elseif size(errVal,1) < 50          % checks number of error sample values 
    %%% Prints warning to command window 
    fprintf('\n\nWARNING: The number of Error Samples entered ') 
    fprintf('(%i < 50) is less than the recommended minimum ',size(errVal,1)) 
    fprintf('number of samples.  Processing will continue, but results ') 
    fprintf('should be taken under careful consideration.\n') 
end                                 % ends loop checking number of values 

  
predCov     = [];                   % creates accuracy covariance matrix 
scalarCov   = [];                   % creates calced scalar accuracy variable 
scalarVal   = [];                   % creates input scalar accuracy variable 
fidLev      = 'high';               % sets default fidelity level value 
minSamp     = [];                   % creates minimum sample variable 
test999999  = 'off';                % creates 99.9999% test flag variable 
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VaccFid = [97 95 94 90;86 83 80 76;44 40 38 34 
           96 91 90 86;80 78 74 70;70 34 32 30 
           88 86 84 80;70 66 64 62;30 28 26 22]; % vertical fidelity 
HaccFid = [97 95 93 90;85 83 78 76;44 39 38 34 
           95 90 88 84;78 76 72 68;36 30 30 24 
           85 84 82 76;65 64 60 54;25 24 18 14]; % horizontal fidelity 
RaccFid = [96 94 93 87;84 82 78 73;42 37 37 31 
           89 85 84 82;72 71 69 66;32 27 27 22 
           80 79 79 72;59 57 57 50;19 15 15 10]; % 3d radial fidelity 
if nargin < 3                       % checks number of function inputs 
    fprintf('\n\nThe number of inputs into the function are not enough for ') 
    fprintf('predicted accuracy validation.\nPlease enter the predicted ') 
    fprintf('covariance, computed predicted scalar accuracy covariance, or ') 
    fprintf('the predicted scalar accuracy CE values.\n\n') 
    return                          % exits function 
else                                % checks number of function inputs 
    for n = 1:2:nargin-2            % starts loop to cycle through inputs 
        if strcmp(varargin{n},'PredictedCovariance') || ... 
           strcmp(varargin{n},'ComputedScalar') % checks input type 
            if isnumeric(varargin{n+1})  % checks entered value is a number 
                predCov = varargin{n+1}; % defines predicted covariance 
            else                    % checks entered value is a number 
                fprintf('\n\nThe predicted accuracy function was expecting ') 
                fprintf('a numeric matrix.\nPlease check covariance ') 
                fprintf('input.\n\n') % prints statement to command window 
                return              % exits function 
            end                     % ends loop checking entered value 

             
            if size(errVal,2) == 1  % checks if validating vertical 
                if size(predCov,1) == 1 % checks size of predicted covariance 
                    predCov  = transpose(predCov); % changes direction 
                end                 % ends loop checking size of covariance 
                if size(predCov,1) ~= size(errVal,1) % variances to errors 
                    %%% Prints statement to command window 
                    fprintf('\n\nWARNING: The number of Predicted ') 
                    fprintf('Variances entered (%i) does ',size(predCov,1)) 
                    fprintf('not equal the number of Error Samples entered ') 
                    fprintf('(%i).  Please enter the ',size(errVal,1)) 
                    fprintf('same number of error values and variances.\n')                               
                    return          % exits function 
                end                 % ends comparison of variances to errors 
            elseif size(errVal,2) == 2  % checks if validating horizontal 
                if size(predCov,1) == 1 % checks predicted covariance matrix 
                    %%% Prints statement to command window 
                    fprintf('\n\nTo analyze the horizontal (radial) ') 
                    fprintf('component the entered Predicted Covariance ') 
                    fprintf('matrix should be 2-by-2-by-%i\n',size(errVal,1)) 
                    return          % exits function 
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                elseif size(predCov,1) == 3 % checks size of covariance 
                    if size(predCov,2) == 3 % checks size of covariance 
                        if size(predCov,3) ~= size(errVal,1) % checks covar 
                            %%% Prints statement to command window 
                            fprintf('\n\nWARNING: The number of Predicted ') 
                            fprintf('Covariances entered ') 
                            fprintf('(%i) does not equal ',size(predCov,3)) 
                            fprintf('the number of Error Samples entered ') 
                            fprintf('(%i).  Please enter ',size(errVal,1)) 
                            fprintf('the same number of error values and ') 
                            fprintf('covariances.\n') 
                            return  % exits function 
                        else        % checks size of predicted covariance 
                            fprintf('The upper left 2-by-2 protion of the ') 
                            fprintf('Predicted Covariance will be used.\n') 
                            predCov = predCov(1:2,1:2,:); % reduces size 
                        end         % ends loop checking size 
                    else            % checks size of predicted covariance 
                        fprintf('\n\nThe entered Predicted Covariance ') 
                        fprintf('matrix should be 2-by-2-by-') 
                        fprintf('%i\n',size(errVal,1))  % prints statement 
                        return      % exits function 
                    end             % ends loop checking size of covariance 
                elseif size(predCov,1) == 2 % checks size of covariance 
                    if size(predCov,2) == 2 % checks size of covariance 
                        if size(predCov,3) ~= size(errVal,1) % checks covar 
                            %%% Prints statement to command window 
                            fprintf('\n\nWARNING: The number of Predicted ') 
                            fprintf('Covariances entered') 
                            fprintf('(%i) does not equal ',size(predCov,3)) 
                            fprintf('the number of Error Samples entered ') 
                            fprintf('(%i). Please enter ',size(errVal,1)) 
                            fprintf('the same number of error values and ') 
                            fprintf('covariances.\n') 
                            return  % exits function 
                        end         % ends loop checking size of covariance 
                    else            % checks size of predicted covariance 
                        fprintf('\n\nThe entered Predicted Covariance ') 
                        fprintf('matrix should be 2-by-2-by-') 
                        fprintf('%i\n',size(errVal,1))  % prints statement 
                        return      % exits function 
                    end             % ends loop checking size of covariance 
                else                % checks size of predicted covariance 
                    fprintf('\n\nThe entered Predicted Covariance matrix ') 
                    fprintf('should be 2-by-2-by-%i\n',size(errVal,1)) 
                    return          % exits function 
                end                 % ends loop checking size of covariance 
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            elseif size(errVal,2) == 3  % checks if validating 3d radials 
                if size(predCov,1) == 3 % checks size of predicted covariance 
                    if size(predCov,2) == 3 % checks size of covariance 
                        if size(predCov,3) ~= size(errVal,1) % checks covar 
                            fprintf('\n\nWARNING: The number of Predicted ') 
                            fprintf('Covariances entered ') 
                            fprintf('(%i) does not equal ',size(predCov,3)) 
                            fprintf('the number of Error Samples entered ') 
                            fprintf('(%i). Please enter ',size(errVal,1)) 
                            fprintf('the same number of error values and ') 
                            fprintf('covariances.\n') 
                            return  % exits function 
                        end         % ends loop checking size of covariance 
                    else            % checks size of predicted covariance 
                        fprintf('\n\nThe entered Predicted Covariance ') 
                        fprintf('matrix should be 3-by-3-by-') 
                        fprintf('%i\n',size(errVal,1)) % prints statement 
                        return      % exits function 
                    end             % ends loop checking size of covariance 
                else                % checks size of predicted covariance 
                    fprintf('\n\nThe entered Predicted Covariance matrix ') 
                    fprintf('should be 3-by-3-by-%i\n',size(errVal,1)) 
                    return          % exits function 
                end                 % ends loop checking size of covariance 
            end                     % ends loop checking type of validation 
            if strcmp(varargin{n},'ComputedScalar') % checks input type 
                scalarCov   = predCov;  % computed predicted scalar accuracy 
                predCov     = [];       % resets predicted covariance 
            end                     % ends loop checking input type 
        elseif strcmp(varargin{n},'EnteredScalar') % checks input type 
            if isnumeric(varargin{n+1})  % checks entered value is a number 
                scalarVal = varargin{n+1}; % defines predicted covariance 
                if size(errVal,2) == 3  % checks components of error values 
                    fprintf('\n\nOnly the horizontal portion of the ') 
                    fprintf('entered error values will be used.\n') 
                    errVal  = errVal(:,1:2); % reduces error value matrix 
                end                 % ends loop checking error values 
            else                    % checks entered value is a number 
                fprintf('\n\nThe predicted accuracy function was expecting ') 
                fprintf('a numeric vector.\nPlease check input predicted ') 
                fprintf('scalar accuracy input.\n\n') % prints statement 
                return              % exits function 
            end                     % ends loop checking entered value 

             
            if size(scalarVal,1) == 1 % checking orientation of vector 
                scalarVal   = transpose(scalarVal); % reversing orientation 
            end 
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            if size(scalarVal,1) ~= size(errVal,1) % compares CE90s to errors 
                %%% Prints statement to command window 
                fprintf('\n\nWARNING: The number of Predicted Scalar ') 
                fprintf('Accuracy values entered (%i) ',size(scalarVal,1)) 
                fprintf('does not equal the number of Error Samples ') 
                fprintf('entered (%i).  Please enter the ',size(errVal,1)) 
                fprintf('same number of error values and CE90 values.\n')                               
                return              % exits function 
            end                     % ends comparison of CE90s to errors 
        elseif strcmp(varargin{n},'FidelityLevel') % checks input type 
            if isnumeric(varargin{n+1}) == 0 % checks entered value is number 
                fidLev  = varargin{n+1};    % fidelity level 
            end                     % ends loop checking entered value 
        elseif strcmp(varargin{n},'MinSamples') %checks min number of samples 
            if isnumeric(varargin{n+1})     % checks entered value is number 
                minSamp = varargin{n+1};    % min number of error samples 
            end                     % ends loop checking entered value 
        elseif strcmp(varargin{n},'Test0.999999') % checks for 99.9999% test 
            if isnumeric(varargin{n+1}) == 0 % checks entered value is number 
                test999999  = varargin{n+1}; % updates 99.9999% test value 
            end                     % ends loop checking entered value 
        elseif strcmp(varargin{n},'VerticalFidelity') % checks vert fidelity 
            if isnumeric(varargin{n+1}) % checks entered value is number 
                if size(varargin{n+1}) == [9 4] % checks size of input 
                    VaccFid = varargin{n+1}; % updates vertical fidelity 
                else                % checks size of input 
                    fprintf('\n\nInput vertical fidelity matrix is the ') 
                    fprintf('incorrect size.  Default matrix is being ') 
                    fprintf('used.\n') % prints statement to command window 
                end                 % ends loop checking input size 
            end                     % ends loop checking entered value 
        elseif strcmp(varargin{n},'HorizontalFidelity') % checks hor fidelity 
            if isnumeric(varargin{n+1}) % checks entered value is number 
                if size(varargin{n+1}) == [9 4] % checks size of input 
                    HaccFid = varargin{n+1}; % updates vertical fidelity 
                else                % checks size of input 
                    fprintf('\n\nInput horizontal fidelity matrix is the ') 
                    fprintf('incorrect size.  Default matrix is being ') 
                    fprintf('used.\n') % prints statement to command window 
                end                 % ends loop checking input size 
            end                     % ends loop checking entered value 
        elseif strcmp(varargin{n},'RadialFidelity') % checks radial fidelity 
            if isnumeric(varargin{n+1}) % checks entered value is number 
                if size(varargin{n+1}) == [9 4] % checks size of input 
                    RaccFid = varargin{n+1}; % updates vertical fidelity 
                else                % checks size of input 
                    fprintf('\n\nInput 3d radial fidelity matrix is the ') 
                    fprintf('incorrect size.  Default matrix is being ') 
                    fprintf('used.\n') % prints statement to command window 
                end                 % ends loop checking input size 
            end                     % ends loop checking entered value 
        end                         % ends loop checking input type 
    end                             % ends loop cycling through inputs 
end                                 % ends loop checking number of inputes 

  
numSamp = size(errVal,1);           % number of error samples being validated 
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fprintf('\n\nThe current Predicted Accuracy Validation activity is ') 
fprintf('validating %i samples.\n',numSamp) % prints statement 
fprintf('The validation will be performed using the ') % prints statement 
if isempty(predCov) == 0            % checks type of validation 
    fprintf('predicted radials.\n') % prints statement to command window 
elseif isempty(scalarCov) == 0      % checks type of validation 
    fprintf('predicted scalar accuracy metrics computed from error ') 
    fprintf('covariance matrices.\n') % prints statement to command window 
elseif isempty(scalarVal) == 0      % checks type of validation 
    fprintf('predicted scalar accuracy metrics entered by the user.\n') 
end                                 % ends loop checking type of validation 
fprintf('The Fidelity Level being used is %s',fidLev) % prints statement 
if strcmp(fidLev,'high')            % checks fidelity level being used 
    fprintf(' (default).\n')        % prints statement to command window 
else                                % checks fidelity level being used 
    fprintf('.\n')                  % prints statement to command window 
end                                 % ends loop checking probability level 
if isempty(minSamp) == 0            % checks min number of error samples 
    if numSamp < minSamp            % checks if number of samples is met 
        fprintf('WARNING: The number of error samples (%i) ',numSamp) 
        fprintf('is less than the minimum number of i.i.d. error ') 
        fprintf('samples (%i).\n',minSamp)  % prints statement 
    else                            % checks if number of samples is met 
        fprintf('The number of error samples (%i) meets the ',numSamp) 
        fprintf('minimum number of i.i.d. error samples (%i).\n',minSamp) 
    end                             % ends loop checking number of samples 
end                                 % ends loop checking min number of i.i.d. 
%%%%% CHECKING INPUTS 

  
%%% Interpolation between number of samples for use with tables. 
sampLev = [400 100 50 25];          % number of sample values 
if numSamp >= 400                   % checks number of samples 
    levSc   = 1;                    % sets sample level scale 
elseif numSamp == 25                % checks number of samples 
    levSc   = 4;                    % sets sample level scale 
else                                % checks number of samples 
    l1      = find(sampLev >= numSamp); % sample levels above sample number 
    l2      = find(sampLev < numSamp);  % sample levels below sample number 
    levSc   = l1(end)+((sampLev(l1(end))-numSamp)/(sampLev(l1(end))-... 
              sampLev(l2(1))));     % sets sample level scale 
end                                 % ends loop checking number of samples 

  
predMag = [5.0 2.576 1.645 0.674 
           5.3 3.035 2.146 1.177 
           5.5 3.368 2.500 1.538];  % predicted magnitude values 

  
%%% Use of the Predictive Statistics function as found in "Accuracy and 
%%% Predicted Accuracy in the NSG: Predictive Statistics; Technical  
%%% Guidance Document TGD 2a Section 7: Reference Appendix C.3 Pseudo-code". 
%%% Example function call: 
%%% LEcal = LEintegral(covar,mCoord,prob) 
%%% CEcal = CEintegral(covar,mCoord,prob) 
%%% SEcal = SEintegral(covar,mCoord,prob) 
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%%%%% Calculations being performed 
if size(errVal,2) == 1 || size(errVal,2) == 3 % checks if testing vertical 
    if size(errVal,2) == 1          % checks if testing 1d or 3d 
        fprintf('\n\nThe vertical component of the sample errors will be ') 
        fprintf('analyzed (validated).\n\n')    % prints statement 
        verErr  = abs(errVal);      % vertical error values 
        if isempty(predCov) == 0    % checks type of validation 
            fprintf('\nThe vertical component is being analyzed ') 
            fprintf('(validated) with the predicted radials.\n') 
            verCov  = predCov;      % vertical error variances 
        elseif isempty(scalarCov) == 0 % checks type of validation 
            fprintf('\nThe vertical component is being analyzed ') 
            fprintf('(validated) with the computed predicted scalar ') 
            fprintf('accuracy metrics.\n') % prints statement 
            verCov  = scalarCov;    % vertical error variances 
        else                        % checks type of validation 
            fprintf('\nAn error has occured in the determination of the ') 
            fprintf('type of validation to apply to the vertical ') 
            fprintf('component.\n') % prints statement to command window 
            return                  % exits function 
        end                         % ends loop checking type of validation 
    else                            % checks if testing 1d or 3d 
        fprintf('\n\nThe vertical, horizontal (radial), and 3d radial ') 
        fprintf('components of the sample errors will be analyzed ') 
        fprintf('(validated).\n\n') % prints statement to command window 
        verErr  = abs(errVal(:,3)); % vertical error values 
        if isempty(predCov) == 0    % checks type of validation 
            fprintf('\nThe vertical component is being analyzed ') 
            fprintf('(validated) with the predicted radials.\n') 
            verCov  = reshape(predCov(3,3,:),size(verErr)); % vertical covar 
        elseif isempty(scalarCov) == 0 % checks type of validaiton 
            fprintf('\nThe vertical component is being analyzed ') 
            fprintf('(validated) with the computed predicted scalar ') 
            fprintf('accuracy metrics.\n') % prints statement 
            verCov  = reshape(scalarCov(3,3,:),size(verErr)); % covariance 
        else                        % checks type of validation 
            fprintf('\nAn error has occured in the determination of the ') 
            fprintf('type of validation to apply to the vertical ') 
            fprintf('component.\n') % prints statement to command window 
            return                  % exits function 
        end                         % ends loop checking type of validation 
    end                             % ends loop checking tests to perform 

     
    sampErr = verErr*ones(1,4);     % sample radial error 
    if isempty(predCov) == 0        % checks validation type 
        normNum = sqrt(verErr.*(1./verCov).*verErr); % normalized numerator 
        verNorm = (normNum*ones(1,4))./... 
                  (ones(numSamp,1)*predMag(1,:)); % vert normalized errors 
        predRad = verErr*predMag(1,:).*... 
                  (((verErr.*(1./verCov).*verErr).^... 
                  (-1/2))*ones(1,4)); % predicted sample radial error 
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    elseif isempty(scalarCov) == 0  % checks validation type 
        prob    = [.99 .90 .50];    % probability levels for tests 
        predRad = zeros(numSamp,4); % creates matrix for LE values 
        fprintf('\tCalculating LE values for probability ') 
        for m = 1:length(prob)      % starts loop to cycle thru probabilities 
            fprintf('%i%% ... ',prob(m)*100)    % prints statement 
            for n = 1:numSamp       % starts loop to cycle through samples 
                predRad(n,m+1) = LEintegral(verCov(n),0,prob(m)); % LE values 
            end                     % ends loop cycling through samples 
        end                         % ends loop cycling thru probabilities 
        fprintf('done.\n\n')        % prints statement to command window 

         
        if strcmp(test999999,'on')  % checks if performing 99.9999% test 
            predRad(:,1) = predMag(1,1)/predMag(1,3)*predRad(:,3); % LE999999 
        end                         % ends loop checking 99.9999% test 

         
        verNorm = sampErr./predRad; % check normalized errors 
    end                             % ends loop checking validation type 

     
    req9999 = 100;                  % sets pass percent for 99.9999% level 
    %%% Interpolation for pass percentage from table 
    if floor(levSc) == ceil(levSc)  % checks interpolation position 
        if strcmp(fidLev,'high')    % checks if using high fidelity 
            req99   = VaccFid(1,floor(levSc)); % 99% level 
            req90   = VaccFid(2,floor(levSc)); % 90% level 
            req50   = VaccFid(3,floor(levSc)); % 50% level 
        elseif strcmp(fidLev,'medium')  % checks if using medium fidelity 
            req99   = VaccFid(4,floor(levSc)); % 99% level 
            req90   = VaccFid(5,floor(levSc)); % 90% level 
            req50   = VaccFid(6,floor(levSc)); % 50% level 
        else                        % checks if using low fidelity 
            req99   = VaccFid(7,floor(levSc)); % 99% level 
            req90   = VaccFid(8,floor(levSc)); % 90% level 
            req50   = VaccFid(9,floor(levSc)); % 50% level 
        end                         % ends loop checking fidelity 
    else                            % checks interpolation position 
        if strcmp(fidLev,'high')    % checks if using high fidelity 
            req99   = VaccFid(1,floor(levSc))-(sampLev(floor(levSc))-... 
                      numSamp)*(VaccFid(1,floor(levSc))-... 
                      VaccFid(1,ceil(levSc)))/(sampLev(floor(levSc))-... 
                      sampLev(ceil(levSc))); % 99% level 
            req90   = VaccFid(2,floor(levSc))-(sampLev(floor(levSc))-... 
                      numSamp)*(VaccFid(2,floor(levSc))-... 
                      VaccFid(2,ceil(levSc)))/(sampLev(floor(levSc))-... 
                      sampLev(ceil(levSc))); % 90% level 
            req50   = VaccFid(3,floor(levSc))-(sampLev(floor(levSc))-... 
                      numSamp)*(VaccFid(3,floor(levSc))-... 
                      VaccFid(3,ceil(levSc)))/(sampLev(floor(levSc))-... 
                      sampLev(ceil(levSc))); % 50% level 
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        elseif strcmp(fidLev,'medium')  % checks if using medium fidelity 
            req99   = VaccFid(4,floor(levSc))-(sampLev(floor(levSc))-... 
                      numSamp)*(VaccFid(4,floor(levSc))-... 
                      VaccFid(4,ceil(levSc)))/(sampLev(floor(levSc))-... 
                      sampLev(ceil(levSc))); % 99% level 
            req90   = VaccFid(5,floor(levSc))-(sampLev(floor(levSc))-... 
                      numSamp)*(VaccFid(5,floor(levSc))-... 
                      VaccFid(5,ceil(levSc)))/(sampLev(floor(levSc))-... 
                      sampLev(ceil(levSc))); % 90% level 
            req50   = VaccFid(6,floor(levSc))-(sampLev(floor(levSc))-... 
                      numSamp)*(VaccFid(6,floor(levSc))-... 
                      VaccFid(6,ceil(levSc)))/(sampLev(floor(levSc))-... 
                      sampLev(ceil(levSc))); % 50% level 
        else                        % checks if using low fidelity 
            req99   = VaccFid(7,floor(levSc))-(sampLev(floor(levSc))-... 
                      numSamp)*(VaccFid(7,floor(levSc))-... 
                      VaccFid(7,ceil(levSc)))/(sampLev(floor(levSc))-... 
                      sampLev(ceil(levSc))); % 99% level 
            req90   = VaccFid(8,floor(levSc))-(sampLev(floor(levSc))-... 
                      numSamp)*(VaccFid(8,floor(levSc))-... 
                      VaccFid(8,ceil(levSc)))/(sampLev(floor(levSc))-... 
                      sampLev(ceil(levSc))); % 90% level 
            req50   = VaccFid(9,floor(levSc))-(sampLev(floor(levSc))-... 
                      numSamp)*(VaccFid(9,floor(levSc))-... 
                      VaccFid(9,ceil(levSc)))/(sampLev(floor(levSc))-... 
                      sampLev(ceil(levSc))); % 50% level 
        end                         % ends loop checking fidelity 
    end                             % ends loop checking table position 

     
    fprintf('FINAL VALIDATION RESULTS: The following results are for ') 
    fprintf('Vertical Accuracy Validation.\n') % prints statement 

     
    if strcmp(test999999,'on')      % checks if performing 99.9999% test 
        num9999 = length(find(verNorm(:,1) <= 1)); % 99.9999% passing number 
        act9999 = num9999/numSamp*100;  % percent passing 99.9999% level test 
        fprintf('%i of %i samples passed the 99.9999%% ',num9999,numSamp) 
        fprintf('validation level test\n') % prints statement 
        fprintf('\tRequired Percentage:%6.1f\t',req9999) % prints statement 
        fprintf('\tActual Percentage:%6.1f\t',act9999)   % prints statament 
        fprintf('\tValidation Result: ') % prints statement to command window 
        if act9999 >= req9999       % checks if test is passed 
            fprintf('PASS\n')       % prints statement to command window 
        else                        % checks if test is failed 
            fprintf('FAIL\n')       % prints statement to command window 
        end                         % ends loop checking test status 
    end                             % ends loop checking for 99.9999% test 

     
    num99   = length(find(verNorm(:,2) <= 1)); % 99% passing number 
    act99   = num99/numSamp*100;    % percent passing 99% level test 
    fprintf('%i of %i samples passed the 99%% ',num99,numSamp) 
    fprintf('validation level test\n') % prints statement to command window 
    fprintf('\tRequired Percentage:%6.1f\t',req99)  % prints statement 
    fprintf('\tActual Percentage:%6.1f\t',act99)    % prints statement 
    fprintf('\tValidation Result: ') % prints statement to command window 
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    if act99 >= req99               % checks if test is passed 
        fprintf('PASS\n')           % prints statement to command window 
    else                            % checks if test is failed 
        fprintf('FAIL\n')           % prints statement to command window 
    end                             % ends loop checking test status 

     
    num90   = length(find(verNorm(:,3) <= 1)); % 90% passing number 
    act90   = num90/numSamp*100;    % percent passing 90% level test 
    fprintf('%i of %i samples passed the 90%% ',num90,numSamp) 
    fprintf('validation level test\n') % prints statement to command window 
    fprintf('\tRequired Percentage:%6.1f\t',req90)  % prints statement 
    fprintf('\tActual Percentage:%6.1f\t',act90)    % prints statement 
    fprintf('\tValidation Result: ') % prints statement to command window 
    if act90 >= req90               % checks if test is passed 
        fprintf('PASS\n')           % prints statement to command window 
    else                            % checks if test is failed 
        fprintf('FAIL\n')           % prints statement to command window 
    end                             % ends loop checking test status 

     
    num50   = length(find(verNorm(:,4) > 1));  % 50% passing number 
    act50   = num50/numSamp*100;    % percent passing 50% level test 
    fprintf('%i of %i samples passed the 50%% ',num50,numSamp) 
    fprintf('validation level test\n') % prints statement to command window 
    fprintf('\tRequired Percentage:%6.1f\t',req50)  % prints statement 
    fprintf('\tActual Percentage:%6.1f\t',act50)    % prints statement 
    fprintf('\tValidation Result: ') % prints statement to command window 
    if act50 >= req50               % checks if test is passed 
        fprintf('PASS\n')           % prints statement to command window 
    else                            % checks if test is failed 
        fprintf('FAIL\n')           % prints statement to command window 
    end                             % ends loop checking test status 

     
    figure(1)                       % makes figure current 
    clf                             % clears current figure 
    hold on                         % turns hold on for current figure 
    plot(predRad(:,2),sampErr(:,2),'b.') % plots error vs predicted error 
    axisLimit   = ceil(max([predRad(:,2);sampErr(:,2)])); % max axis value 
    plot([0 axisLimit],[0 axisLimit],'b-') % plots validation line 
    axis equal                      % sets axes to equal scales 
    axis([0 axisLimit 0 axisLimit]) % sets axes limits 
    title('Vertical Error Samples vs. Predicted 99% Ellipsoid Errors') 
    xlabel('Predicted 99% Ellipsoid Error (m)') % adds label to x-axis 
    ylabel('Vertical Error (m)')    % adds label to y-axis 
    hold off                        % turns hold off for current figure 
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    figure(2)                       % makes figure current 
    clf                             % clears current figure 
    hold on                         % turns hold on for current figure 
    plot(predRad(:,3),sampErr(:,3),'b.') % plots error vs predicted error 
    axisLimit   = ceil(max([predRad(:,3);sampErr(:,3)])); % max axis value 
    plot([0 axisLimit],[0 axisLimit],'b-') % plots validation line 
    axis equal                      % sets axes to equal scales 
    axis([0 axisLimit 0 axisLimit]) % sets axes limits 
    title('Vertical Error Samples vs. Predicted 90% Ellipsoid Errors') 
    xlabel('Predicted 90% Ellipsoid Error (m)') % adds label to x-axis 
    ylabel('Vertical Error (m)')    % adds label to y-axis 
    hold off                        % turns hold off for current figure 

     
    figure(3)                       % makes figure current 
    clf                             % clears current figure 
    hold on                         % turns hold on for current figure 
    plot(predRad(:,4),sampErr(:,4),'b.') % plots error vs predicted error 
    axisLimit   = ceil(max([predRad(:,4);sampErr(:,4)])); % max axis value 
    plot([0 axisLimit],[0 axisLimit],'b-') % plots validation line 
    axis equal                      % sets axes to equal scales 
    axis([0 axisLimit 0 axisLimit]) % sets axis limits 
    title('Vertical Error Samples vs. Predicted 50% Ellipsoid Errors') 
    xlabel('Predicted 50% Ellipsoid Error (m)') % adds label to x-axis 
    ylabel('Vertical Error (m)')    % adds label to y-axis 
    hold off                        % turns hold off for current figure 

     
    if isempty(scalarCov)           % checks validation type 
        figure(4)                   % makes figure current 
        clf                         % clears current figure 
        hold on                     % turns hold on for current figure 
        axisLimit = ceil(max([predRad(:,2);sampErr(:,2)])); % max axis value 
        plot([0 axisLimit/(predMag(1,2)/predMag(1,3))],... 
             [0 axisLimit],'r-')    % plots 99% validation line 
        plot([0 axisLimit],[0 axisLimit],'b-') % plots 90% validation line 
        plot([0 axisLimit],...      % plots 50% validation line 
             [0 (predMag(1,4)/predMag(1,3))*axisLimit],'g-') 
        plot(predRad(:,3),sampErr(:,3),'b.') % plots error vs predicted error 
        axis equal                  % sets axes to equal scales 
        axis([0 axisLimit 0 axisLimit]) % sets axis limits 
        title(['Vertical Error Samples vs. Predicted 90% Ellipsoid '... 
               'Errors: 50%, 90%, 99% lines']) % adds title to figure 
        xlabel('Predicted 90% Ellipsoid Error (m)') % adds label to x-axis 
        ylabel('Vertical Error (m)') % adds label to y-axis 
        legend('99% Validation Line','90% Validation Line',... 
               '50% Validation Line','Location','northwest') % adds legend 
        hold off                    % turns hold off for current figure 
        drawnow                     % forces display to refresh 
    end                             % ends loop checking validation type 
end                                 % ends loop testing vertical 
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if size(errVal,2) == 2 || size(errVal,2) == 3 % checks if testing horizontal 
    if size(errVal,2) == 2          % checks if testing 2d or 3d 
        fprintf('\n\nThe horizontal (radial) component of the sample errors') 
        fprintf(' will be analyzed (validated).\n\n') % prints statement 
        horErr  = errVal;           % horizontal error values 
        if isempty(predCov) == 0    % checks type of validation 
            fprintf('\n\nThe horizontal (radial) component is being ') 
            fprintf('analyzed (validated) with the predicted radials.\n') 
            horCov  = predCov;      % horizontal error covariances 
        elseif isempty(scalarCov) == 0 % checks type of validation 
            fprintf('\n\nThe horizontal (radial) component is being ') 
            fprintf('analyzed (validated) with the computed predicted ') 
            fprintf('scalar accuracy metrics.\n') % prints statement 
            horCov  = scalarCov;    % horizontal error covariance 
        elseif isempty(scalarVal) == 0 % checks type of validation 
            fprintf('\n\nThe horizontal (radial) component is being ') 
            fprintf('analyzed (validated) with the entered predicted ') 
            fprintf('scalar accuracy metrics.\n') % prints statement 
            horCov  = scalarVal;    % CE90 values 
        else                        % checks type of validation 
            fprintf('\n\nAn error has occured in the determination of the ') 
            fprintf('type of validation to apply to the horizontal ') 
            fprintf('(radial) component.\n') % prints statement 
            return                  % exits function 
        end                         % ends loop checking validation type 
    else                            % checks if testing 2d or 3d 
        horErr  = errVal(:,1:2);    % horizontal error values 
        if isempty(predCov) == 0    % checks type of validation 
            fprintf('\n\nThe horizontal (radial) component is being ') 
            fprintf('analyzed (validated) with the redicted radials.\n') 
            horCov  = predCov(1:2,1:2,:); % horizontal error covariances 
        elseif isempty(scalarCov) == 0 % checks type of validation 
            fprintf('\n\nThe horizontal (radial) component is being ') 
            fprintf('analyzed (validated) with the computed predicted ') 
            fprintf('scalar accuracy metrics.\n')  % prints statement 
            horCov  = scalarCov(1:2,1:2,:); % horizontal error covariance 
        elseif isempty(scalarVal) == 0 % checks type of validation 
            fprintf('\n\nThe horizontal (radial) component is being ') 
            fprintf('analyzed (validated) with the entered predicted ') 
            fprintf('scalar accuracy metrics.\n') % prints statement 
            horCov  = scalarVal;    % CE90 values 
        else                        % checks type of validation 
            fprintf('\n\nAn error has occured in the determination of the ') 
            fprintf('type of validation to apply to the horizontal ') 
            fprintf('(radial) component.\n') % prints statement 
            return                  % exits function 
        end                         % ends loop checking type of validation 
    end                             % ends loop checking tests to perform 
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    horDist = sqrt(horErr(:,1).^2+horErr(:,2).^2); % 2d radial distance 
    sampErr = horDist*ones(1,4);    % sample radial errors 
    if isempty(predCov) == 0        % checks validation type 
        horNorm = zeros(numSamp,4); % creates matrix for normalized values 
        predRad = zeros(numSamp,4); % creates matrix for predicted radials 
        for n = 1:numSamp           % starts loop to cycle through samples 
            %%% Computes normalized error 
            horNorm(n,:) = sqrt(horErr(n,:)*inv(horCov(:,:,n))*... 
                           transpose(horErr(n,:)))./predMag(2,:); 
            predRad(n,:) = predMag(2,:)*horDist(n)*(horErr(n,:)*... 
                           inv(horCov(:,:,n))*transpose(horErr(n,:))).^... 
                           (-1/2);  % predicted sample radial error 
        end                         % ends loop cycling through samples 
    elseif isempty(scalarCov) == 0  % checks validation type 
        prob    = [.99 .90 .50];    % probability levels for tests 
        predRad = zeros(numSamp,4); % creates matrix for CE values 
        fprintf('\tCalculating CE values for probability ') 
        for m = 1:length(prob)      % starts loop to cycle thru probabilities 
            fprintf('%i%% ... ',prob(m)*100) % prints statement 
            for n = 1:numSamp       % starts loop to cycle through samples 
                %%% computes CE value at specified probability 
                predRad(n,m+1) = CEintegral(horCov(:,:,n),[0;0],prob(m)); 
            end                     % ends loop cycling through samples 
        end                         % ends loop cycling thru probabilities 
        fprintf('done.\n\n')        % prints statement to command window 

         
        if strcmp(test999999,'on')  % checks if performing 99.9999% test 
            predRad(:,1) = predMag(2,1)/predMag(2,3)*predRad(:,3); % CE999999 
        end                         % ends loop checking 99.9999% test 

         
        horNorm = sampErr./predRad; % horizontal normalized error 
    elseif isempty(scalarVal) == 0  % checks validation type 
%         predRad = scalarVal;        % predicted radial 
%         sampErr = sqrt(horErr(:,1).^2+horErr(:,2).^2); % sample radial 

errors 
%         horNorm = sampErr./predRad; % horizontal normalized error 

         
        predRad = zeros(numSamp,4); % creates matrix for predicted radials 
        predRad(:,1) = (predMag(2,1)/predMag(2,3))*scalarVal; % fill matrix 
        predRad(:,2) = (predMag(2,2)/predMag(2,3))*scalarVal; % fill matrix 
        predRad(:,3) = scalarVal;   % fill matrix 
        predRad(:,4) = (predMag(2,4)/predMag(2,3))*scalarVal; % fill matrix 
        horNorm = sampErr./predRad; % horizontal normalized error 
    end                             % ends loop checking validation type 

     
    req9999 = 100;                  % sets pass percent for 99.9999% level 
    %%% Interpolation for pass percentage from table 
    if floor(levSc) == ceil(levSc)  % checks for value directly from table 
        if strcmp(fidLev,'high')    % checks if using high fidelity 
            req99   = HaccFid(1,floor(levSc)); % 99% level 
            req90   = HaccFid(2,floor(levSc)); % 90% level 
            req50   = HaccFid(3,floor(levSc)); % 50% level 
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        elseif strcmp(fidLev,'medium')  % checks if using medium fidelity 
            req99   = HaccFid(4,floor(levSc)); % 99% level 
            req90   = HaccFid(5,floor(levSc)); % 90% level 
            req50   = HaccFid(6,floor(levSc)); % 50% level 
        else                        % checks if using low fidelity 
            req99   = HaccFid(7,floor(levSc)); % 99% level 
            req90   = HaccFid(8,floor(levSc)); % 90% level 
            req50   = HaccFid(9,floor(levSc)); % 50% level 
        end                         % ends loop checking fidelity 
    else                            % checks for interpolated table value 
        if strcmp(fidLev,'high')    % checks if using high fidelity 
            req99   = HaccFid(1,floor(levSc))-(sampLev(floor(levSc))-... 
                      numSamp)*(HaccFid(1,floor(levSc))-... 
                      HaccFid(1,ceil(levSc)))/(sampLev(floor(levSc))-... 
                      sampLev(ceil(levSc))); % 99% level 
            req90   = HaccFid(2,floor(levSc))-(sampLev(floor(levSc))-... 
                      numSamp)*(HaccFid(2,floor(levSc))-... 
                      HaccFid(2,ceil(levSc)))/(sampLev(floor(levSc))-... 
                      sampLev(ceil(levSc))); % 90% level 
            req50   = HaccFid(3,floor(levSc))-(sampLev(floor(levSc))-... 
                      numSamp)*(HaccFid(3,floor(levSc))-... 
                      HaccFid(3,ceil(levSc)))/(sampLev(floor(levSc))-... 
                      sampLev(ceil(levSc))); % 50% level 
        elseif strcmp(fidLev,'medium')  % checks if using medium fidelity 
            req99   = HaccFid(4,floor(levSc))-(sampLev(floor(levSc))-... 
                      numSamp)*(HaccFid(4,floor(levSc))-... 
                      HaccFid(4,ceil(levSc)))/(sampLev(floor(levSc))-... 
                      sampLev(ceil(levSc))); % 99% level 
            req90   = HaccFid(5,floor(levSc))-(sampLev(floor(levSc))-... 
                      numSamp)*(HaccFid(5,floor(levSc))-... 
                      HaccFid(5,ceil(levSc)))/(sampLev(floor(levSc))-... 
                      sampLev(ceil(levSc))); % 90% level 
            req50   = HaccFid(6,floor(levSc))-(sampLev(floor(levSc))-... 
                      numSamp)*(HaccFid(6,floor(levSc))-... 
                      HaccFid(6,ceil(levSc)))/(sampLev(floor(levSc))-... 
                      sampLev(ceil(levSc))); % 50% level 
        else                        % checks if using low fidelity 
            req99   = HaccFid(7,floor(levSc))-(sampLev(floor(levSc))-... 
                      numSamp)*(HaccFid(7,floor(levSc))-... 
                      HaccFid(7,ceil(levSc)))/(sampLev(floor(levSc))-... 
                      sampLev(ceil(levSc))); % 99% level 
            req90   = HaccFid(8,floor(levSc))-(sampLev(floor(levSc))-... 
                      numSamp)*(HaccFid(8,floor(levSc))-... 
                      HaccFid(8,ceil(levSc)))/(sampLev(floor(levSc))-... 
                      sampLev(ceil(levSc))); % 90% level 
            req50   = HaccFid(9,floor(levSc))-(sampLev(floor(levSc))-... 
                      numSamp)*(HaccFid(9,floor(levSc))-... 
                      HaccFid(9,ceil(levSc)))/(sampLev(floor(levSc))-... 
                      sampLev(ceil(levSc))); % 50% level 
        end                         % ends loop checking fidelity 
    end                             % ends loop checking table location 
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    fprintf('FINAL VALIDATION RESULTS: The following results are for ') 
    fprintf('Horizontal (radial) Accuracy Validation.\n') % prints statement 

     
    if strcmp(test999999,'on')      % checks if preforming 99.9999% test 
        num9999 = length(find(horNorm(:,1) <= 1)); % 99.9999% passing number 
        act9999 = num9999/numSamp*100;  % percent passing 99.9999% level test 
        fprintf('%i of %i samples passed the 99.9999%% ',num9999,numSamp) 
        fprintf('validation level test\n') % prints statement 
        fprintf('\tRequired Percentage:%6.1f\t',req9999) % prints statement 
        fprintf('\tActual Percentage:%6.1f\t',act9999)   % prints statament 
        fprintf('\tValidation Result: ') % prints statement to command window 
        if act9999 >= req9999       % checks if test is passed 
            fprintf('PASS\n')       % prints statement to command window 
        else                        % checks if test is failed 
            fprintf('FAIL\n')       % prints statement to command window 
        end                         % ends loop checking test status 
    end                             % ends loop checking for 99.9999% test 

     
    num99   = length(find(horNorm(:,2) <= 1)); % 99% passing number 
    act99   = num99/numSamp*100;    % percent passing 99% level test 
    fprintf('%i of %i samples passed the 99%% ',num99,numSamp) 
    fprintf('validation level test\n') % prints statement 
    fprintf('\tRequired Percentage:%6.1f\t',req99)  % prints statement 
    fprintf('\tActual Percentage:%6.1f\t',act99)    % prints statement 
    fprintf('\tValidation Result: ') % prints statement to command window 
    if act99 >= req99               % checks if test is passed 
        fprintf('PASS\n')           % prints statement to command window 
    else                            % checks if test is failed 
        fprintf('FAIL\n')           % prints statement to command window 
    end                             % ends loop checking test status 

     
    figure(5)                       % makes figure current 
    clf                             % clears current figure 
    hold on                         % turns hold on for current figure 
    plot(predRad(:,2),sampErr(:,2),'b.') % plots error vs predicted error 
    axisLimit = ceil(max([predRad(:,2);sampErr(:,2)])); % max axis value 
    plot([0 axisLimit],[0 axisLimit],'b-') % plots validation line 
    axis equal                      % sets axes to equal scales 
    axis([0 axisLimit 0 axisLimit]) % sets axes limits 
    title(['Horizontal (radial) Error Samples vs. Predicted 99% '... 
            'Ellipsoid Errors'])    % adds title to figure 
    xlabel('Predicted 99% Ellipsoid Error (m)') % adds label to x-axis 
    ylabel('Horizontal (radial) Error (m)')     % adds label to y-axis 
    hold off                        % turns hold off for current figure 

     
    num90   = length(find(horNorm(:,3) <= 1)); % 90% passing number 
    act90   = num90/numSamp*100;    % percent passing 90% level test 
    fprintf('%i of %i samples passed the 90%% ',num90,numSamp) 
    fprintf('validation level test\n') % prints statement 
    fprintf('\tRequired Percentage:%6.1f\t',req90)  % prints statement 
    fprintf('\tActual Percentage:%6.1f\t',act90)    % prints statement 
    fprintf('\tValidation Result: ') % prints statement to command window 
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    if act90 >= req90               % checks if test is passed 
        fprintf('PASS\n')           % prints statement to command window 
    else                            % checks if test is failed 
        fprintf('FAIL\n')           % prints statement to command window 
    end                             % ends loop checking test status 

     
    figure(6)                       % makes figure current 
    clf                             % clears current figure 
    hold on                         % turns hold on for current figure 
    plot(predRad(:,3),sampErr(:,3),'b.') % plots error vs predicted error 
    axisLimit = ceil(max([predRad(:,2);sampErr(:,2)])); % max axis value 
    plot([0 axisLimit],[0 axisLimit],'b-') % plots validation line 
    axis equal                      % sets axes to equal scales 
    axis([0 axisLimit 0 axisLimit]) % sets axes limits 
    title(['Horizontal (radial) Error Samples vs. Predicted 90% '... 
           'Ellipsoid Errors'])     % adds title to figure 
    xlabel('Predicted 90% Ellipsoid Error (m)') % adds label to x-axis 
    ylabel('Horizontal (radial) Error (m)')     % adds label to y-axis 
    hold off                        % turns hold off for current figure 

     
    num50   = length(find(horNorm(:,4) > 1));  % 50% passing number 
    act50   = num50/numSamp*100;    % percent passing 50% level test 
    fprintf('%i of %i samples passed the 50%% ',num50,numSamp) 
    fprintf('validation level test\n') % prints statement 
    fprintf('\tRequired Percentage:%6.1f\t',req50)  % prints statement 
    fprintf('\tActual Percentage:%6.1f\t',act50)    % prints statement 
    fprintf('\tValidation Result: ') % prints statement to command window 
    if act50 >= req50               % checks if test is passed 
        fprintf('PASS\n')           % prints statement to command window 
    else                            % checks if test is failed 
        fprintf('FAIL\n')           % prints statement to command window 
    end                             % ends loop checking test status 

     
    figure(7)                       % makes figure current 
    clf                             % clears current figure 
    hold on                         % turns hold on for current figure 
    plot(predRad(:,4),sampErr(:,4),'b.') % plots error vs predicted error 
    axisLimit = ceil(max([predRad(:,4);sampErr(:,4)])); % max axis value 
    plot([0 axisLimit],[0 axisLimit],'b-') % plots validation line 
    axis equal                      % sets axes to equal scales 
    axis([0 axisLimit 0 axisLimit]) % sets axis limits 
    title(['Horizontal (radial) Error Samples vs. Predicted 50% '... 
           'Ellipsoid Errors'])     % adds title to figure 
    xlabel('Predicted 50% Ellipsoid Error (m)') % adds label to x-axis 
    ylabel('Horizontal (radial) Error (m)')     % adds label to y-axis 
    hold off                        % turns hold off for current figure 
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    if isempty(predCov) == 0        % checks validation type 
        figure(8)                   % makes figure current 
        clf                         % clears current figure 
        hold on                     % turns hold on for current figure 
        axisLimit = ceil(max([predRad(:,3);sampErr(:,3)])); % max axis value 
        plot([0 axisLimit/(predMag(2,2)/predMag(2,3))],... 
             [0 axisLimit],'r-')    % plots 99% validation line 
        plot([0 axisLimit],[0 axisLimit],'b-') % plots 90% validation line 
        plot([0 axisLimit],...      % plots 50% validation line 
             [0 (predMag(2,4)/predMag(2,3))*axisLimit],'g-') 
        plot(predRad(:,3),sampErr(:,3),'b.') % plots error vs predicted error 
        axis equal                  % sets axes to equal scales 
        axis([0 axisLimit 0 axisLimit]) % sets axis limits 
        title(['Horizontal (radial) Error Samples vs. Predicted 90% '... 
               'Ellipsoid Errors: 50%, 90%, 99% lines']) % adds title 
        xlabel('Predicted 90% Ellipsoid Error (m)') % adds label to x-axis 
        ylabel('Horizontal (radial) Error (m)')     % adds label to y-axis 
        legend('99% Validation Line','90% Validation Line',... 
               '50% Validation Line','Location','northwest') % adds legend 
        hold off                    % turns hold off for current figure 
    end                             % ends loop checking validation type 
    drawnow                         % forces display to refresh 
end                                 % ends loop testing horizontal 

  
if size(errVal,2) == 3              % checks if testing 3d radial 
    radErr  = errVal;               % 3d radial error values 
    if isempty(predCov) == 0        % checks type of validation 
        fprintf('\n\nThe 3d radial component is being analyzed (validated) ') 
        fprintf('with the predicted radials.\n') % prints statement 
        radCov  = predCov;          % horizontal error covariances 
    elseif isempty(scalarCov) == 0  % checks type of validation 
        fprintf('\n\nThe 3d radial component is being analyzed (validated) ') 
        fprintf('with the computed predicted scalar accuracy metrics.\n') 
        radCov  = scalarCov;        % horizontal error covariance 
    else                            % checks type of validation 
        fprintf('\n\nAn error has occured in the determination of the ') 
        fprintf('type of validation to apply to the 3d radial ') 
        fprintf('component.\n')     % prints statement to command window 
        return                      % exits function 
    end                             % ends loop checking validation type 

     
    radDist = sqrt(radErr(:,1).^2+radErr(:,2).^2+radErr(:,3).^2); % 3d dist 
    sampErr = radDist*ones(1,4);    % sample radial errors 
    if isempty(predCov) == 0        % checks validation type 
        radNorm = zeros(numSamp,4); % creates matrix for normalized values 
        predRad = zeros(numSamp,4); % creates matrix for predicted radials 
        for n = 1:numSamp           % starts loop to cycle through samples 
            %%% Computes normalized error 
            radNorm(n,:) = sqrt(radErr(n,:)*inv(radCov(:,:,n))*... 
                           transpose(radErr(n,:)))./predMag(3,:); 
            predRad(n,:) = predMag(3,:)*radDist(n)*(radErr(n,:)*... 
                           inv(radCov(:,:,n))*transpose(radErr(n,:))).^... 
                           (-1/2);  % predicted sample radial error 
        end                         % ends loop cycling through samples 
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    elseif isempty(scalarCov) == 0  % checks validation type 
        prob    = [.99 .90 .50];    % probability levels for tests 
        predRad = zeros(numSamp,4); % creates matrix for SE values 
        fprintf('\tCalculating SE values for probability ') 
        for m = 1:length(prob)      % starts loop to cycle thru probabilities 
            fprintf('%i%% ... ',prob(m)*100) % prints statement 
            for n = 1:numSamp       % starts loop to cycle through samples 
                %%% computes SE value at specified probability 
                predRad(n,m+1) = SEintegral(radCov(:,:,n),[0;0;0],prob(m)); 
            end                     % ends loop cycling through samples 
        end                         % ends loop cycling thru probabilities 
        fprintf('done.\n\n')        % prints statement to command window 

         
        if strcmp(test999999,'on')  % checks if performing 99.9999% test 
            predRad(:,1) = predMag(3,1)/predMag(3,3)*predRad(:,3); % SE999999 
        end                         % ends loop checking 99.9999% test 

         
        radNorm = sampErr./predRad; % horizontal normalized error 
    end                             % ends loop checking validation type 

     
    req9999 = 100;                  % sets pass percent for 99.9999% level 
    %%% Interpolation for pass percentage from table 
    if floor(levSc) == ceil(levSc)  % checks if value directly in table 
        if strcmp(fidLev,'high')    % checks if using high fidelity 
            req99   = RaccFid(1,floor(levSc)); % 99% level 
            req90   = RaccFid(2,floor(levSc)); % 90% level 
            req50   = RaccFid(3,floor(levSc)); % 50% level 
        elseif strcmp(fidLev,'medium')  % checks if using medium fidelity 
            req99   = RaccFid(4,floor(levSc)); % 99% level 
            req90   = RaccFid(5,floor(levSc)); % 90% level 
            req50   = RaccFid(6,floor(levSc)); % 50% level 
        else                            % checks if using low fidelity 
            req99   = RaccFid(7,floor(levSc)); % 99% level 
            req90   = RaccFid(8,floor(levSc)); % 90% level 
            req50   = RaccFid(9,floor(levSc)); % 50% level 
        end                         % ends loop checking fidelity 
    else                            % checks if value interpolated from table 
        if strcmp(fidLev,'high')    % checks if using high fidelity 
            req99   = RaccFid(1,floor(levSc))-(sampLev(floor(levSc))-... 
                      numSamp)*(RaccFid(1,floor(levSc))-... 
                      RaccFid(1,ceil(levSc)))/(sampLev(floor(levSc))-... 
                      sampLev(ceil(levSc))); % 99% level 
            req90   = RaccFid(2,floor(levSc))-(sampLev(floor(levSc))-... 
                      numSamp)*(RaccFid(2,floor(levSc))-... 
                      RaccFid(2,ceil(levSc)))/(sampLev(floor(levSc))-... 
                      sampLev(ceil(levSc))); % 90% level 
            req50   = RaccFid(3,floor(levSc))-(sampLev(floor(levSc))-... 
                      numSamp)*(RaccFid(3,floor(levSc))-... 
                      RaccFid(3,ceil(levSc)))/(sampLev(floor(levSc))-... 
                      sampLev(ceil(levSc))); % 50% level 
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        elseif strcmp(fidLev,'medium')  % checks if using medium fidelity 
            req99   = RaccFid(4,floor(levSc))-(sampLev(floor(levSc))-... 
                      numSamp)*(RaccFid(4,floor(levSc))-... 
                      RaccFid(4,ceil(levSc)))/(sampLev(floor(levSc))-... 
                      sampLev(ceil(levSc))); % 99% level 
            req90   = RaccFid(5,floor(levSc))-(sampLev(floor(levSc))-... 
                      numSamp)*(RaccFid(5,floor(levSc))-... 
                      RaccFid(5,ceil(levSc)))/(sampLev(floor(levSc))-... 
                      sampLev(ceil(levSc))); % 90% level 
            req50   = RaccFid(6,floor(levSc))-(sampLev(floor(levSc))-... 
                      numSamp)*(RaccFid(6,floor(levSc))-... 
                      RaccFid(6,ceil(levSc)))/(sampLev(floor(levSc))-... 
                      sampLev(ceil(levSc))); % 50% level 
        else                        % checks if using low fidelity 
            req99   = RaccFid(7,floor(levSc))-(sampLev(floor(levSc))-... 
                      numSamp)*(RaccFid(7,floor(levSc))-... 
                      RaccFid(7,ceil(levSc)))/(sampLev(floor(levSc))-... 
                      sampLev(ceil(levSc))); % 99% level 
            req90   = RaccFid(8,floor(levSc))-(sampLev(floor(levSc))-... 
                      numSamp)*(RaccFid(8,floor(levSc))-... 
                      RaccFid(8,ceil(levSc)))/(sampLev(floor(levSc))-... 
                      sampLev(ceil(levSc))); % 90% level 
            req50   = RaccFid(9,floor(levSc))-(sampLev(floor(levSc))-... 
                      numSamp)*(RaccFid(9,floor(levSc))-... 
                      RaccFid(9,ceil(levSc)))/(sampLev(floor(levSc))-... 
                      sampLev(ceil(levSc))); % 50% level 
        end                         % ends loop checking fidelity 
    end                             % ends loop checks table location 

     
    fprintf('FINAL VALIDATION RESULTS: The following results are for 3d ') 
    fprintf('radial Accuracy Validation.\n') % prints statement 

     
    if strcmp(test999999,'on')      % checks if performing 99.9999% test 
        num9999 = length(find(radNorm(:,1) <= 1)); % 99.9999% passing number 
        act9999 = num9999/numSamp*100;  % percent passing 99.9999% level test 
        fprintf('%i of %i samples passed the 99.9999%% ',num9999,numSamp) 
        fprintf('validation level test\n') % prints statement 
        fprintf('\tRequired Percentage:%6.1f\t',req9999) % prints statement 
        fprintf('\tActual Percentage:%6.1f\t',act9999)   % prints statament 
        fprintf('\tValidation Result: ') % prints statement to command window 
        if act9999 >= req9999       % checks if test is passed 
            fprintf('PASS\n')       % prints statement to command window 
        else                        % checks if test is failed 
            fprintf('FAIL\n')       % prints statement to command window 
        end                         % ends loop checking test status 
    end                             % ends loop checking for 99.9999% test 

     
    num99   = length(find(radNorm(:,2) <= 1)); % 99% passing number 
    act99   = num99/numSamp*100;    % percent passing 99% level test 
    fprintf('%i of %i samples passed the 99%% ',num99,numSamp) 
    fprintf('validation level test\n') % prints statement to command window 
    fprintf('\tRequired Percentage:%6.1f\t',req99)  % prints statement 
    fprintf('\tActual Percentage:%6.1f\t',act99)    % prints statement 
    fprintf('\tValidation Result: ') % prints statement to command window 
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    if act99 >= req99               % checks if test is passed 
        fprintf('PASS\n')           % prints statement to command window 
    else                            % checks if test is failed 
        fprintf('FAIL\n')           % prints statement to command window 
    end                             % ends loop checking test status 

     
    num90   = length(find(radNorm(:,3) <= 1)); % 90% passing number 
    act90   = num90/numSamp*100;    % percent passing 90% level test 
    fprintf('%i of %i samples passed the 90%% ',num90,numSamp) 
    fprintf('validation level test\n') % prints statement to command window 
    fprintf('\tRequired Percentage:%6.1f\t',req90)  % prints statement 
    fprintf('\tActual Percentage:%6.1f\t',act90)    % prints statement 
    fprintf('\tValidation Result: ') % prints statement to command window 
    if act90 >= req90               % checks if test is passed 
        fprintf('PASS\n')           % prints statement to command window 
    else                            % checks if test is failed 
        fprintf('FAIL\n')           % prints statement to command window 
    end                             % ends loop checking test status 

     
    num50   = length(find(radNorm(:,4) > 1));  % 50% passing number 
    act50   = num50/numSamp*100;    % percent passing 50% level test 
    fprintf('%i of %i samples passed the 50%% ',num50,numSamp) 
    fprintf('validation level test\n') % prints statement to command window 
    fprintf('\tRequired Percentage:%6.1f\t',req50)  % prints statement 
    fprintf('\tActual Percentage:%6.1f\t',act50)    % prints statement 
    fprintf('\tValidation Result: ') % prints statement to command window 
    if act50 >= req50               % checks if test is passed 
        fprintf('PASS\n')           % prints statement to command window 
    else                            % checks if test is failed 
        fprintf('FAIL\n')           % prints statement to command window 
    end                             % ends loop checking test status 

     
    figure(9)                       % makes figure current 
    clf                             % clears current figure 
    hold on                         % turns hold on for current figure 
    plot(predRad(:,2),sampErr(:,2),'b.') % plots error vs predicted error 
    axisLimit   = ceil(max([predRad(:,2);sampErr(:,2)])); % max axis value 
    plot([0 axisLimit],[0 axisLimit],'b-') % plots validation line 
    axis equal                      % sets axes to equal scales 
    axis([0 axisLimit 0 axisLimit]) % sets axes limits 
    title(['3d Radial Error Samples vs. Predicted 99% '... 
           'Ellipsoid Errors'])     % adds title to figure 
    xlabel('Predicted 99% Ellipsoid Error (m)') % adds label to x-axis 
    ylabel('3d Radial Error (m)')   % adds label to y-axis 
    hold off                        % turns hold off for current figure 
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    figure(10)                      % makes figure current 
    clf                             % clears current figure 
    hold on                         % turns hold on for current figure 
    plot(predRad(:,3),sampErr(:,3),'b.') % plots error vs predicted error 
    axisLimit   = ceil(max([predRad(:,3);sampErr(:,3)])); % max axis value 
    plot([0 axisLimit],[0 axisLimit],'b-') % plots validation line 
    axis equal                      % sets axes to equal scales 
    axis([0 axisLimit 0 axisLimit]) % sets axes limits 
    title(['3d Radial Error Samples vs. Predicted 90% '... 
           'Ellipsoid Errors'])     % adds title to figure 
    xlabel('Predicted 90% Ellipsoid Error (m)') % adds label to x-axis 
    ylabel('3d Radial Error (m)')   % adds label to y-axis 
    hold off                        % turns hold off for current figure 

     
    figure(11)                      % makes figure current 
    clf                             % clears current figure 
    hold on                         % turns hold on for current figure 
    plot(predRad(:,4),sampErr(:,4),'b.') % plots error vs predicted error 
    axisLimit   = ceil(max([predRad(:,4);sampErr(:,4)])); % max axis value 
    plot([0 axisLimit],[0 axisLimit],'b-') % plots validation line 
    axis equal                      % sets axes to equal scales 
    axis([0 axisLimit 0 axisLimit]) % sets axis limits 
    title(['3d Radial Error Samples vs. Predicted 50% '... 
           'Ellipsoid Errors'])     % adds title to figure 
    xlabel('Predicted 50% Ellipsoid Error (m)') % adds label to x-axis 
    ylabel('3d Radial Error (m)')   % adds label to y-axis 
    hold off                        % turns hold off for current figure 

     
    if isempty(scalarCov)           % checks validation type 
        figure(12)                  % makes figure current 
        clf                         % clears current figure 
        hold on                     % turns hold on for current figure 
        axisLimit = ceil(max([predRad(:,3);sampErr(:,3)])); % max axis value 
        plot([0 axisLimit/(predMag(3,2)/predMag(3,3))],... 
             [0 axisLimit],'r-')    % plots 99% validation line 
        plot([0 axisLimit],[0 axisLimit],'b-') % plots 90% validation line 
        plot([0 axisLimit],...      % plots 50% validation line 
             [0 (predMag(3,4)/predMag(3,3))*axisLimit],'g-') 
        plot(predRad(:,3),sampErr(:,3),'b.') % plots error vs predicted error 
        axis equal                  % sets axes to equal scales 
        axis([0 axisLimit 0 axisLimit]) % sets axis limits 
        title(['3d Radial Error Samples vs. Predicted 90% Ellipsoid '... 
               'Errors: 50%, 90%, 99% lines']) % adds title to figure 
        xlabel('Predicted 90% Ellipsoid Error (m)') % adds label to x-axis 
        ylabel('3d Radial Error (m)') % adds label to y-axis 
        legend('99% Validation Line','90% Validation Line',... 
               '50% Validation Line','Location','northwest') % adds legend 
        hold off                    % turns hold off for current figure 
        drawnow                     % forces display to refresh 
    end                             % ends loop checking validation type 
end                                 % ends loop testing 3d radial 
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C.2 Examples 

All examples use the same process to generate covariances and the corresponding error samples.  This 

process involves random number generation to make each covariance, error sample, and example 

different.  This code is for the sole purpose of generating the necessary values for the following 

examples, and is not part of the Predicted Accuracy Validation function. 

The MATLAB code for this generation is as follows. 

%%% Specify 2 different "basic" actual (true) 3x3 error covariance matrices 
%%% for "variability and modeling within "operational constraints"; values 
%%% essentially arbitrary but must correspond to valid covariance matrices 
%%% (symmetric and positive definite) for 3d geolocation errors: 
P1      = zeros(3,3);               % creates first covariance 
P1(1,1) = 1.2;                      % fills part of covariance 
P1(2,2) = 1.1;                      % fills part of covariance 
P1(3,3) = 1.3;                      % fills part of covariance 
P1(1,2) = .2*sqrt(P1(1,1)*P1(2,2)); % fills part of covariance 
P1(2,1) = P1(1,2);                  % fills part of covariance 
P1(1,3) = .1*sqrt(P1(1,1)*P1(3,3)); % fills part of covariance 
P1(3,1) = P1(1,3);                  % fills part of covariance 
P1(2,3) = .8*sqrt(P1(2,2)*P1(3,3)); % fills part of covariance 
P1(3,2) = P1(2,3);                  % fills part of covariance 
P1      = 3*P1;                     % scales covariance 

  
P2      = zeros(3,3);               % creates second covariance 
P2(1,1) = 2.2;                      % fills part of covariance 
P2(2,2) = 1.6;                      % fills part of covariance 
P2(3,3) = 1.8;                      % fills part of covariance 
P2(1,2) = .2*sqrt(P2(1,1)*P2(2,2)); % fills part of covariance 
P2(2,1) = P2(1,2);                  % fills part of covariance 
P2(1,3) = .1*sqrt(P2(1,1)*P2(3,3)); % fills part of covariance 
P2(3,1) = P2(1,3);                  % fills part of covariance 
P2(2,3) = .8*sqrt(P2(2,2)*P2(3,3)); % fills part of covariance 
P2(3,2) = P2(2,3);                  % fills part of covariance 
P2      = 3*P2;                     % scales covariance 

  
%%% Loop over number of samples to create "realizations"; perturb each 
%%% sample and covariance so slightly differnt 
fprintf('Starting creation of sample value: ... ') % prints statement 
P   = zeros(3,3,numSamp);           % creates covariance matrices 
X   = zeros(numSamp,3);             % creates matrix for sample values 
for n = 1:numSamp                   % creates loop to cycle through samples 
    if mod(n,10) == 0               % checks current loop counter 
        fprintf('%i ... ',n)        % prints statement to command window 
    end                             % ends loop cycling through samples 

     
    if mod(n,2) == 0                % checks current loop counter 
        Puse    = P1;               % sets current sample covariance 
    else                            % checks current loop counter 
        Puse    = P2;               % sets current sample covariance 
    end                             % ends loop checking current loop counter 
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    Puse    = Puse+diag(.01*diag(Puse).*randn(3,1)); % perturbs covariance 

     
    X(n,:)   = sqrtm(Puse)*randn(3,1); % generates sample values 
    P(:,:,n) = .95*Puse;            % predicted error covariance matrix 
end                                 % ends loop cycling through samples 
fprintf('done\n')                   % prints statement to command window 

 

C.2.1 Example 1: Radial Method of Calculating the Normalized Error 

Example 1:  This example uses the radial (ellipsoidal based) method of calculating the normalized error.  

This will be done for a group of (100) 3d inputs.  The function call and the results follow. 

The error samples values for this call are in the variable X, and would take the form of an n-by-3 matrix, 

where n is the number of error samples.  Here the format is shown with five error samples, but this 

example used 100. 

  2.18 -0.50 -2.31  
  5.15 0.86 4.59  
X=  -0.44 1.21 2.99  

  -2.07 2.31 3.45  
  -0.77 -0.29 -1.39  

 

The predicted covariances for this call are in the variable P.  The covariances are stored in a three 

dimensional matrix being 3-by-3-by-n, where n is the number of error samples.  The format is shown 

again with only five covariances, but this example used 100. 

Covariance corresponding to first error sample (P matrix Layer 1): 

  6.3037 1.0694 0.5671  
P(3x3x1)=  1.0694 4.6436 3.8693  

  0.5671 3.8693 5.0141  

 

Covariance corresponding to second error sample (P matrix Layer 2): 

  3.4052 0.6549 0.3560  
P(3x3x1)=  0.6549 3.1457 2.7265  

  0.3560 2.7265 3.8376  

 

Covariance corresponding to third error sample (P matrix Layer 3): 

  6.3155 1.0694 0.5671  
P(3x3x1)=  1.0694 4.5571 3.8693  

  0.5671 3.8693 5.1667  
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Covariance corresponding to fourth error sample (P matrix Layer 4): 

  3.4682 0.6549 0.3560  
P(3x3x1)=  0.6549 3.1794 2.7265  

  0.3560 2.7265 3.7299  

 

Covariance corresponding to fifth error sample (P matrix Layer 5): 

  6.3007 1.0694 0.5671  
P(3x3x1)=  1.0694 4.6072 3.8693  

  0.5671 3.8693 5.1673  

 

Function Call: 

PredictedAccuracyValidation(X,'PredictedCovariance',P,'MinSamples',75) 

 

Function Results: 

The current Predicted Accuracy Validation activity is validating 100 samples. 

The validation will be performed using the predicted radials. 

The Fidelity Level being used is high (default). 

The number of error samples (100) meets the minimum number of i.i.d. error samples (75). 

 

The vertical, horizontal (radial), and 3d radial components of the sample errors will be analyzed 

(validated). 

 

The vertical component is being analyzed (validated) with the predicted radials. 

FINAL VALIDATION RESULTS: The following results are for Vertical Accuracy Validation. 

97 of 100 samples passed the 99% validation level test 

 Required Percentage:  95.0 Actual Percentage:  97.0 Validation Result: PASS 

90 of 100 samples passed the 90% validation level test 

 Required Percentage:  83.0 Actual Percentage:  90.0 Validation Result: PASS 

48 of 100 samples passed the 50% validation level test 

 Required Percentage:  40.0 Actual Percentage:  48.0 Validation Result: PASS 
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The horizontal (radial) component is being analyzed (validated) with the predicted radials. 

FINAL VALIDATION RESULTS: The following results are for Horizontal (radial) Accuracy Validation. 

100 of 100 samples passed the 99% validation level test 

 Required Percentage:  95.0 Actual Percentage: 100.0 Validation Result: PASS 

91 of 100 samples passed the 90% validation level test 

 Required Percentage:  83.0 Actual Percentage:  91.0 Validation Result: PASS 

52 of 100 samples passed the 50% validation level test 

 Required Percentage:  39.0 Actual Percentage:  52.0 Validation Result: PASS 
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The 3d radial component is being analyzed (validated) with the predicted radials. 

FINAL VALIDATION RESULTS: The following results are for 3d radial Accuracy Validation. 

100 of 100 samples passed the 99% validation level test 

 Required Percentage:  94.0 Actual Percentage: 100.0 Validation Result: PASS 

92 of 100 samples passed the 90% validation level test 

 Required Percentage:  82.0 Actual Percentage:  92.0 Validation Result: PASS 

53 of 100 samples passed the 50% validation level test 

 Required Percentage:  37.0 Actual Percentage:  53.0 Validation Result: PASS 
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C.2.2 Example 2: Computed Scalar Accuracy Method of Calculating the Normalized Error 

Example 2:  This example uses the computed predicted scalar accuracy method of calculating the 

normalized error.  This will be done for a group of 1d inputs.  (Note: for ease of experiment, the 

predicted covariance values actually correspond to ‘high’ fidelity although ‘medium’ is specified in the 

function call.)  The function call and the results follow. 

The error samples values for this call are in the variable X, and would take the form of an n-by-1 vector, 

where n is the number of error samples.  Here the format is shown with five error samples, but this 

example used 100. 

  -2.31  
  4.59  
X=  2.99  

  3.45  
  -1.39  

 

The predicted variances for this call are in the variable P.  The variances are stored in a vector being n-

by-1, where n is the number of error samples.  The format is shown again with only five variances, but 

this example used 100. 

  5.0141  
  3.8376  

P=  5.1667  
  3.7299  
  5.1673  

 

Function Call: 

PredictedAccuracyValidation(X,'ComputedScalar',P, 

'FidelityLevel','medium', 

'Test0.999999','on') 

 

Function Results: 

The current Predicted Accuracy Validation activity is validating 100 samples. 

The validation will be performed using the predicted scalar accuracy metrics computed from error 

covariance matrices. 

The Fidelity Level being used is medium. 
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The vertical component of the sample errors will be analyzed (validated). 

 

The vertical component is being analyzed (validated) with the computed predicted scalar accuracy 

metrics. 

 Calculating LE values for probability 99% ... 90% ... 50% ... done. 

 

FINAL VALIDATION RESULTS: The following results are for Vertical Accuracy Validation. 

100 of 100 samples passed the 99.9999% validation level test 

 Required Percentage: 100.0 Actual Percentage: 100.0 Validation Result: PASS 

99 of 100 samples passed the 99% validation level test 

 Required Percentage:  91.0 Actual Percentage:  99.0 Validation Result: PASS 

92 of 100 samples passed the 90% validation level test 

 Required Percentage:  78.0 Actual Percentage:  92.0 Validation Result: PASS 

50 of 100 samples passed the 50% validation level test 

 Required Percentage:  34.0 Actual Percentage:  50.0 Validation Result: PASS 
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C.2.3 Example 3: Entered Predicted Scalar Accuracy Method of Calculating the Normalized 

Error 

Example 3:  This example uses the entered predicted scalar accuracy method of calculating the 

normalized error.  This will be done for a group of 2d inputs (this option only works with 2d inputs and 

corresponding CE90 values).  The function call and the results follow. 

The error samples values for this call are in the variable X, and would take the form of an n-by-2 matrix, 

where n is the number of error samples.  Here the format is shown with five error samples, but this 

example used 100. 

  2.18 -0.50  
  5.15 0.86  
X=  -0.44 1.21  

  -2.07 2.31  
  -0.77 -0.29  

 

This example uses the option to use input CE90 values.  Internal to the predicted accuracy validation 

function, the corresponding CE99 and CE50 values are approximated by scaling the CE90 values.  This 

option is available because some users will not have access to the covariance matrices corresponding to 

the error samples, but they will have the CE90 value calculated from those covariance matrices.  If the 

user has the corresponding covariance matrices instead, then the method used in Example 1 is 

recommended.  If the corresponding covariance matrices are available and the use of the LE, CE, and SE 

values are desired instead, then the method used in Example 2 is applicable. 

For this current example the CE90 values were calculated using the function, CEintegral,  found in 

“Accuracy and Predicted Accuracy in the NSG: Predictive Statistics; Technical Guidance Document TGD 

2a Section 7: Reference Appendix C.3 Pseudo-code”.  The CE90 calculation is done from a 2-by-2 

covariance matrix P, and the call can be seen below.  This call is not part of the Predicted Accuracy 

Validation function, but used to obtain the desired input.  Repeating this call for the number of error 

sample covariances and placing the resulting CE90 values in an n-by-1 vector produces the needed input 

for the function call of this example.  Again, n is the number of error samples.  The format is shown 

again with only five CE90 values, but this example used 100. 
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CE90 = CEintegral(P,[0;0],.90); 

Where a sample P is:  

P= 
 6.3037 1.0694  

 1.0694 4.6436  

 

  5.03  
  3.89  

CE90=  5.02  
  3.92  
  5.03  

 

 

Function Call: 

PredictedAccuracyValidation(X,'EnteredScalar',CE90) 

 

Function Results: 

The current Predicted Accuracy Validation activity is validating 100 samples. 

The validation will be performed using the predicted scalar accuracy metrics entered by the user. 

The Fidelity Level being used is high (default). 

 

The horizontal (radial) component of the sample errors will be analyzed (validated). 

 

The horizontal (radial) component is being analyzed (validated) with the entered predicted scalar 

accuracy metrics. 

FINAL VALIDATION RESULTS: The following results are for Horizontal (radial) Accuracy Validation. 

98 of 100 samples passed the 99% validation level test 

 Required Percentage:  95.0 Actual Percentage:  98.0 Validation Result: PASS 

87 of 100 samples passed the 90% validation level test 

 Required Percentage:  83.0 Actual Percentage:  87.0 Validation Result: PASS 

45 of 100 samples passed the 50% validation level test 

 Required Percentage:  39.0 Actual Percentage:  45.0 Validation Result: PASS 
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 Deriving Normalized Error Tolerances 

This appendix is related to Section 5.4.2 of the main body of TGD 2c.  It provides an overview of the 

methodology used to derive normalized error tolerances for the three-probability levels:  99%, 90% and 

50%.  These tolerances are used in both the specification and validation of predicted accuracy 

requirements. This appendix also presents corresponding non-optimized MATLAB pseudo-code.  

(Possible optimization includes the use of common functions for the various programs in this and the 

other appendices.)  The general approach makes use of Monte-Carlo simulation – in particular, Random 

Vector Genration as detailed in TGD2e. 

The remainder of this introduction and Sections D.1 and D.2 address the derivation of the normalized 

error tolerances.  The underlying predicted error covariance matrices are assumed scalar multiples 

(sigma deviation) of the true but unknown error covariance matrix.  Section D.3 discusses application of 

these tolerance to the more general case when the predicted error covariance matrix is not simply a 

scalar multiple of the true error covariance matrix. 

Derivation of normalized error tolerances 

The plots of the confidence of passing all three normalized error tests versus sigma deviation or 

predicted accuracy fidelity (Figures 5.4.2-1 through 5.4.2-12) and the corresponding tables of 

normalized error tolerances (Tables 5.4.2-2 through 5.4.2-4)  were derived via Monte-Carlo simulation.  

For each plot, statistics were tabulated over the results of 500 different realizations for each “sigma 

deviation” value, each realization corresponding to the specified number of i.i.d. error samples. 

The normalized error test tolerances were derived using Monte-Carlo simulation based on the second 

set of pseudo-code presented in this appendix (Section D.2).  It was used to adjust initial estimates (via 

substitution of “hard-coded” values) of the normalized error tolerances that were derived using another 

Monte-Carlo simulation based on the first set of pseudo-code in this appendix (Section D.1). It computed 

sensitivities of each individual test-level (99, 90, or 50%) to various tolerance values as a function of the 

“sigma deviation” range.  The number of i.i.d. samples was set to 400; thus, essentially are non-factor 

for these sensitivities.   

Subsequent adjustments of these initial estimates were relatively small and resulted in lower tolerance 

values (easier to pass an individual test) such that all three-level tests then pass.  Results were also a 

function of the assumed and specified number of i.i.d. samples per realization.   

Increased probability of success for an individual test is necessary for all three-level tests to pass at the 

same (or better) probability level.  Also, for a given realization, the results of the individual tests are 

correlated, thus the need for “trial and error” adjustments.  For example, if for a given realization (set of 

error samples), the 99%-level test passes, it is more likely than usual that the 90% level test passes as 

well, and less likely than usual that the 50% level test (opposite sign test) passes. 

The following sensitivity plots correspond to the results of this initial simulation and correspond to the 

success of an individual normalized horizontal error test assuming 100 samples.  Statistics were 
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tabulated over the results of 500 different realizations for each “sigma deviation” value, each realization 

corresponding to 100 i.i.d. error samples. 

 

 

Figure D-1: Sensitivity results for normalized horizontal error test tolerance values; 99%-level test; curve 

furthest right corresponds to tolerance equal 98% 
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Figure D-2: Sensitivity results for normalized horizontal error test tolerance values; 90%-level test (curve 

furthest right corresponds to tolerance equal 88%) 

 

Figure D-3: Sensitivity results for normalized horizontal error test tolerance values; 50%-level test (curve 

furthest left corresponds to tolerance equal 48% 
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Note that the horizontal dotted lines in the above plots correspond to confidence at the 99%, 90%, and 

50% levels and are there just for convenience; they are not related to the normalized error test 

tolerance probability-levels of 99%, 90%, and 50%.   

Thus, for example, if we are interested in a 90% confidence of individually passing each of the three 

tests over a sigma deviation range of -15% to +20%, Figures D-1 through D-3, interpolating between 

curves when necessary, specify approximate tolerances of 94 (99% tolerance probability-level) , 81 (90% 

tolerance probability-level), and 33 (50% tolerance probability-level), respectively.  (For this example, we 

are only concerned with the -15% sigma deviation end-point for Figures D-1 and D-2, and the +20% 

sigma deviation end-point for Figure D-3.)  These, in turn, become the starting values for adjustment in 

the second or follow-on Monte-Carlo simulation. 

Note that by using the techniques discussed above (with further details “embedded” in the MATLAB 

pseudo-code), “custom” normalized error tolerance values can also be derived corresponding to 

different levels of predicted accuracy fidelity other than those assumed in Tables 5.4.2-2 through 5.4.2-

4. 

D.1 Sensitivity Pseudo-code (individual tests) for Horizontal Errors 

%"TGD2c_hor_norm_error_sensitivities_ind_tolerances"   5/24/16 
  
% specify desired number of samples, then run multi-level cases: 
  
% compute % of predicted accuracy tests passing validation over a 
% specified number of realizations, where each test is based on a 
% specified tolerance value, a specified number of samples per realization, 
% and a specified sigma deviation; 
% 
% tol_value cases: (1 to 6: values from 98 down by 2's, from 88 down by 4's, 
% and from 48 down by 6's) corresponding to probability levels 
% 99, 90, and 50, respectively; 
  
% sigma_level cases (1 to 21: values of predicted error covariance as  
% (scaled) % of actual error covariance matrix from -50 to +50%)  
  
n_samples=400  
n_real=500 
cov_actual=eye(2); % horizontal error covariance matrix, 

     %a generic "actual covariance",  
                     % suitable for purpose at hand, since actual cov 
                     % "divided out" (to within sigma tolerances) in 
                     % computation of normalized errors below; a different 
                     % actual cov can be specified if so desired 
cov_actual_sqrt=sqrtm(cov_actual); 
d_99=3.035; 
d_90=2.146; 
d_50=1.177;     
results=zeros(6,3,21); 
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    for i2=1:6  %tol values case 
             
        tol_value_99=98-2*(i2-1);    
        tol_value_90=88-4*(i2-1); 
        tol_value_50=48-6*(i2-1); 
                 
        for i4=1:21    % percent sigma case 
                 
            sig_factor=-0.5+(i4-1)*0.05;             
            cov=(1+sig_factor)^2*cov_actual; 
                      
                %begin appropriate validation processing 
                 
                per_real_pass_99=zeros(n_real,1); 
                per_real_pass_90=zeros(n_real,1); 
                per_real_pass_50=zeros(n_real,1); 
                 
                for j=1:n_real 
                     
                    e_norm_99=zeros(n_samples,1); 
                    e_norm_90=zeros(n_samples,1); 
                    e_norm_50=zeros(n_samples,1);  
                    sum_99=0; 
                    sum_90=0; 
                    sum_50=0; 
                     
                    for k=1:n_samples 
                         
                        s=cov_actual_sqrt*randn(2,1); 
                        e_norm_90(k,1)=sqrt(s'*cov^-1*s)/d_90; 
                        e_norm_99(k,1)=(d_90/d_99)* e_norm_90(k,1); 
                        e_norm_50(k,1)=(d_90/d_50)* e_norm_90(k,1); 
                       
                        if(e_norm_99(k,1)<1) 
                          sum_99=sum_99+1; 
                        end 
                       
                        if(e_norm_90(k,1)<1) 
                          sum_90=sum_90+1; 
                        end     
                       if(e_norm_50(k,1)>1) 
                          sum_50=sum_50+1; 
                       end 
                       
                    end % end samples 
                     
                    if((100*sum_99/n_samples)>tol_value_99)    
                        per_real_pass_99(j,1)=1; 
                    end 
                    if((100*sum_90/n_samples)>tol_value_90)    
                        per_real_pass_90(j,1)=1; 
                    end     
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                    if((100*sum_50/n_samples)>tol_value_50)    
                        per_real_pass_50(j,1)=1; 
                    end 
     
                end % end realizations 
                 
                sum_99=0; 
                sum_90=0; 
                sum_50=0; 
                 
                for j=1:n_real 
                     
                    if(per_real_pass_99(j,1)==1) 
                        sum_99=sum_99+1; 
                    end                 
                    if(per_real_pass_90(j,1)==1) 
                        sum_90=sum_90+1; 
                    end                    
                    if(per_real_pass_50(j,1)==1) 
                        sum_50=sum_50+1; 
                    end 
                     
                end 
                 
        results(i2,1,i4)=sum_99/n_real; 
        results(i2,2,i4)=sum_90/n_real; 
        results(i2,3,i4)=sum_50/n_real;         
                 
        end  %end i4 
         
    end   %end i2 
     
             
%plot 99% and 90% and 50% test results: plot  
% realization pass test for a the test's specific tolerance 
%value as a function of sigma value;  
  
plot1=zeros(21,1); 
sig_nmbr=zeros(21,1);  
conf_50=zeros(21,1); 
conf_90=zeros(21,1); 
conf_95=zeros(21,1); 
  
for i=1:21 
    sig_nmbr(i,1)=100*(-.5+(i-1)*.05); 
    conf_50(i,1)=50; 
    conf_90(i,1)=90; 
    conf_95(i,1)=95; 
end 
  
%99% test results:  
figure (1)  
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clf  %this clears the figure from the previous run 
hold on 
for i=1:6 
 for j=1:21        
        plot1(j,1)=100*results(i,1,j);   %index order: i is tol value  
        %case(1-6), probability-level case(1-3), sigma level case (1-21) 
 end 
plot(sig_nmbr,plot1,'b','LineWidth',2); 
end 
plot(sig_nmbr,conf_50,'--m',sig_nmbr,conf_90,'--m',sig_nmbr,conf_95,... 
    '--m','LineWidth',1); 
axis([-50 50 0 100]); 
title(['Sensitivity results; 6 tol values:98, 96,..;' num2str(n_samples)... 
    ' samples per realization (500) ']) 
xlabel('sigma % of pred cov relative to actual cov (%)') 
ylabel('% realizations pass 99% level test'); 
hold off 
  
%90% test results:  
figure (2)  
clf  %this clears the figure from the previous run 
hold on 
for i=1:6 
 for j=1:21        
        plot1(j,1)=100*results(i,2,j);    
 end 
plot(sig_nmbr,plot1,'b','LineWidth',2); 
end 
plot(sig_nmbr,conf_50,'--m',sig_nmbr,conf_90,'--m',sig_nmbr,conf_95,... 
    '--m','LineWidth',1); 
axis([-50 50 0 100]); 
title(['Sensitivity results; 6 tol values:88, 84,..;' num2str(n_samples)... 
    ' samples per realization (500)']) 
xlabel('sigma % of pred cov relative to actual cov (%)') 
ylabel('% realizations pass 90% level test'); 
hold off 
  
%50% test results: 
  
figure (3)  
clf  %this clears the figure from the previous run 
hold on 
for i=1:6 
 for j=1:21 
        plot1(j,1)=100*results(i,3,j);   
 end 
plot(sig_nmbr,plot1,'b','LineWidth',2); 
end 
plot(sig_nmbr,conf_50,'--m',sig_nmbr,conf_90,'--m',sig_nmbr,conf_95,... 
    '--m','LineWidth',1); 
axis([-50 50 0 100]); 
title(['Sensitivity results: 6 tol values;48, 42,..;' num2str(n_samples)... 
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    ' samples per realization (500) ']) 
xlabel('sigma % of pred cov relative to actual cov (%)') 
ylabel('% realizations pass 50% level test'); 
hold off 
 

D.2 Normalized Error Tolerance Pseudo-code (all 3 tests combined) for 

Horizontal Errors 

The following pseudo-code was used to evaluate the effects of normalized error tolerance values on all 
three (combined) normalized error tests for horziontal errors.  The predicted error covariance matrix is 
assumed a scalar multiple of the true (and known to the simulation) error covariance matrix.  The latter 
is assumed to be the generic 2x2 identity matrix (variances equal 1 meters-squared), but can be set to 
any valid covariance matrix, if so desired.  A few lines of the pseudo-code (currently commented out) did 
just that: generated a true covariance matrix with variances equal to 1 and 9 meters-squared.  Results 
were virtually identical to using the generic 2x2 identity matrix for the true covariance matrix, as desired 
and as illustrated by the following plots: 
 

 
Figure D.2-1: Probability of passing all three normalized error tests; medium predicted accuracy fidelity, 

100 i.i.d. samples – true error covariance matrix variances equal 1 meters-squared. 
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Figure D.2-2: Probability of passing all three normalized error tests; medium predicted accuracy fidelity, 

100 i.i.d. samples – true error covariance matrix variances equal 1 and 9 meters-squared. 

 

 
Figure D.2-3: Probability of passing all three normalized error tests; high predicted accuracy fidelity, 50 

i.i.d. samples – true error covariance matrix variances equal 1 meters-squared. 
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Figure D.2-4: Probability of passing all three normalized error tests; high predicted accuracy fidelity, 50 

i.i.d. samples – true error covariance matrix variances equal 1 and 9 meters-squared. 

Pseudo-code 

% "TGD2c_hor_norm_error_combined_tests"   5/25/16 
  
%Confidence that all three probability level test pass for normalized  
%errors, parameterized by specified tolerance values, parameterized by  
%number of i.i.d. samples, as a function of sigma deviation level. 
%Confidence computed as % that all three tests pass taken over numerous  
%(nominally 500 realizations).  Note that these are "approximate" results. 
  
%Program used to determine/verify tolerance values that yield at least 90% 
%confidence within desired sigma deviation interval, and drop-off as fast 
%as possible outside of this interval. 
  
%This program is for horizontal (radial) errors 
  
%Note that toerances below are the defaults, and can also be interpolated  
%for either different number of samples or diferent fidelity (sigma range. 
%Tolerance values (3 per probability_level) are organized by number of 
%samples and predicted accuracy fidelity level. 
  
%Specify desired number of samples and desired predicted accuracy fidelity  
%level then run sigma_level cases (21).  
 
%If subsequent results are unsatisfactory, adjust the “hard coded” tolerance values  
%in “tol value”and try again until a satisfactory set of tolerances is obtained 
  
%"hard code" the desired sample case # and desired fidelity level#: 
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sample_case_nmbr=3  %values 1-4 correspond to 25,50,100,400 samples,  
                    %respectively 
  
fidel_level_nmbr=1  %values 1-3 correspond to high, medium and low 
                    %fidelity, respectively 
  
nmbr_samples_choices=[25 50  100 400] 
n_samples=nmbr_samples_choices(sample_case_nmbr) 
  
fidelity_choices={'high' 'medium' 'low'} 
fidelity=fidelity_choices{fidel_level_nmbr} 
  
%a row in tol_value contains: sample_case_nmbr, fidel_level_nmbr,  
%tol_value_99, tol_value_90, tol_value_50 
  
% for a given number of samples and fidelity (row in tol_value), the  
% corresponding tolerances are default values and cam be adjusted via this  
% program to see results 
  
tol_value=[1    1   90  76  34 
           1    2   84  68  24 
           1    3   76  54  14 
           2    1   93  78  38 
           2    2   88  72  30 
           2    3   82  60  18 
           3    1   95  83  39 
           3    2   90  76  30 
           3    3   84  64  24 
           4    1   97  85  44 
           4    2   95  78  36 
           4    3   85  65  25]; 
                  
loc=find(tol_value(:,1)==sample_case_nmbr & tol_value(:,2)==fidel_level_nmbr); 
tol_value_99=tol_value(loc,3)     
tol_value_90=tol_value(loc,4) 
tol_value_50=tol_value(loc,5) 
  
n_real=500  %"hard coded to 500, can be changed if desired 
  
cov_actual=eye(2);   % horizontal error covariance matrix;  

     %a generic "actual covariance",  
                     % suitable for purpose at hand, since actual cov 
                     % "divided out" (to within sigma tolerances) in 
                     % computation of normalized errors below; a different 
                     % actual cov can be specified if so desired 
  
%cov_actual(1,1)=9;  %use non-identity for actual covariance to show results 
                     %essentially independent of this covariance value, as 
                     %desired 
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cov_actual_sqrt=sqrtm(cov_actual); 
  
d_99=3.035; 
d_90=2.146; 
d_50=1.177; 
     
results=zeros(21,1); 
        
             
        for i=1:21    % sigma (%) case 
                 
            sig_factor=-0.5+(i-1)*0.05;             
            cov=(1+sig_factor)^2*cov_actual; 
                                     
                %begin appropriate validation processing 
                 
                sum_all=0; 
                 
                for j=1:n_real 
                     
                    sum_99=0; 
                    sum_90=0; 
                    sum_50=0; 
                                
                    for k=1:n_samples 
                         
                        s=cov_actual_sqrt*randn(2,1);%horizontal errors                                    
                        e_norm_90=sqrt(s'*cov^-1*s)/d_90;%normalized errors 
                        e_norm_99=(d_90/d_99)* e_norm_90; 
                        e_norm_50=(d_90/d_50)* e_norm_90;               
                        
                       if((e_norm_99<1))  %check if  99% level normalized 
                                          % error test passes 
                           sum_99=sum_99+1; 
                       end 
                       if((e_norm_90<1)) 
                           sum_90=sum_90+1; 
                       end 
                       if((e_norm_50>1)) 
                           sum_50=sum_50+1; 
                       end 
                       
                    end   % end samples 
                    
                     %check if all three tests pass for this realization: 
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                    if(((100*sum_99/n_samples)>tol_value_99)&&...   
                           ((100*sum_90/n_samples)>tol_value_90)&&... 
                           ((100*sum_50/n_samples)>tol_value_50)) 
                        sum_all=sum_all+1; 
                    end 
                     
                end % end realizations 
                            
            results(i,1)=sum_all/n_real;   % percent of realizations  
                                           %where all three tests pass 
        end  %end sigma case 
           
%plot test results: plot % realizations pass all three tests for  
%the tests' specific tolerance values as a function of sigma value;  
  
plot1=zeros(21,1); 
sig_nmbr=zeros(21,1); 
conf_50=zeros(21,1); %for info only on plot (50% confidence hor line) 
conf_90=zeros(21,1); 
conf_95=zeros(21,1); 
 
for i=1:21 
    sig_nmbr(i,1)=100*(-.5+(i-1)*.05); 
    conf_50(i,1)=50; 
    conf_90(i,1)=90; 
    conf_95(i,1)=95; 
end 
  
figure (1)  
clf  %this clears the figure from the previous run 
hold on 
  
 for j=1:21 
        plot1(j,1)=100*results(j,1);   
 end 
plot(sig_nmbr,plot1,'b','LineWidth',2); 
  
plot(sig_nmbr,conf_50,'--m',sig_nmbr,conf_90,'--m',sig_nmbr,conf_95,... 
    '--m','LineWidth',1); 
  
axis([-50 50 0 100]); 
title(['Normalized horizontal error (combined) test:'... 
 num2str(sample_case_nmbr) ' sample case # '... 
 num2str(fidel_level_nmbr) ' fidel level #']) 
title(['Normalized horizontal error (combined) test:sample case # '... 
    num2str(sample_case_nmbr) ' fidel case # ' num2str(fidel_level_nmbr)]) 
  
xlabel('sigma % of pred cov relative to actual cov (%)') 
ylabel('% realizations pass all three level tests'); 
hold off 
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D.3 Extension of Tolerances to Arbitrary Predicted Error Covariance Matrices 

Sections D.1 and D.2 discussed normalized error tolerances assuming that the predicted error 

covariance matrix was a scalar multiple of the true error covariance matrix – a convenient way to 

represent predicted accuracy fidelity using “sigma deviation”, as discussed in Section 5.4.2.  However, 

predicted error covariance matrices are more general than this when associated with levels of predicted 

accuracy fidelity, as discussed in Section 5.4.2 as well, and corresponding to Equation (5.4.2-1) and 

Figure 5.4.2-1 in particular. 

For example, assuming medium predicted accuracy fidelity, any predicted error covariance matrix that 

satisfies the following corresponds to this level of fidelity: 

(1 + 𝑠𝑖𝑔_𝑑𝑒𝑣𝑙)
2𝐶𝑋_𝑡𝑟𝑢𝑒 ≤ 𝐶𝑋_𝑝𝑟𝑒𝑑 ≤ (1 + 𝑠𝑖𝑔_𝑑𝑒𝑣𝑟)

2𝐶𝑋_𝑡𝑟𝑢𝑒,    (D.3-1) 

where 𝑠𝑖𝑔_𝑑𝑒𝑣𝑙 = −0.15 and 𝑠𝑖𝑔_𝑑𝑒𝑣𝑟 = 0.20. 

Also, as illustrated earlier in Figure 5.4.2-1, such a predicted error covariance matrix need not be a scalar 

multiple of the true error covariance matrix, i.e., their respective probability ellipses need not be the 

same shape and/or orientation. 

Furthermore, assuming  Equation (D.3-1) is satisfied and the availability of 100 i.i.d. samples, validation 

should be successful with the probability of success greater than or equal to the minimum probability 

across the x-axis range of -15 to +20% in Figure D.2-1 which does assume that the predicted error 

covariance matrix is a scalar multiple (sigma deviation) of the true error covariance matrix for each value 

of x.  The minimum probability across the x-axis range of -15 to +20% is applicable since the predicted 

radial computed using the predicted error covariance matrix is bounded by the true radials 

corresponding to the true error covariance matrix scaled by the -15% and +20% sigma deviation values, 

also illustrated earlier in Figure 5.4.2-1.   

On the other hand, validation should not be successful for any predicted error covariance matrix that 

satisfies: 

𝐶𝑋𝑝𝑟𝑒𝑑 < (1 + 𝑠𝑖𝑔_𝑑𝑒𝑣𝑙∗)
2𝐶𝑋_𝑡𝑟𝑢𝑒   or   (1 + 𝑠𝑖𝑔_𝑑𝑒𝑣𝑟∗)

2𝐶𝑋𝑡𝑟𝑢𝑒 < 𝐶𝑋_𝑝𝑟𝑒𝑑,   (D.3-2) 

where 𝑠𝑖𝑔_𝑑𝑒𝑣𝑙∗ < 𝑠𝑖𝑔_𝑑𝑒𝑣𝑙 and 𝑠𝑖𝑔_𝑑𝑖𝑣𝑟∗ > 𝑠𝑖𝑔_𝑑𝑒𝑣𝑟, respectively. 

The probability of (correct) failure is greater than one minus the maximum probability of success in the 

corresponding x-axis open intervals 𝑥 < 𝑠𝑖𝑔_𝑑𝑖𝑣𝑙∗ and 𝑥 > 𝑠𝑖𝑔_𝑑𝑖𝑣𝑟∗, respectively, in Figure D.2-1. 

Also, a predicted error covariance matrix can exist that does not satisfy either Equations (D.3-1) or (D.3-

2) – is considered in the “roll-off range” between validation success and validation failure. 

All of the above situations are covered in the following seven examples based on a modification of the 

pseudo-code of Section D-2, such that the predicted error covariance matrix is more general that a strict 

multiple of the true error covariance matrix.  For each case, the predicted error covariance matrix 
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(probability) ellipse (red) is plotted with the (1 + 𝑠𝑖𝑔_𝑑𝑒𝑣𝑙)
2𝐶𝑋_𝑡𝑟𝑢𝑒 ellipse (light blue) and the 

(1 + 𝑠𝑖𝑔_𝑑𝑒𝑣𝑟)
2𝐶𝑋_𝑡𝑟𝑢𝑒 ellipse (blue).  All ellipses were computed as 90% probability ellipses.   

The corresponding confidence in passing validation (based on 500 independent realizations, each with 

100 i.i.d. error samples) is provided in the figure titles.  As can be seen, all are consistent with the 

discussion and content of both the above and Section 5.4.2: 

 

Figure D.3-1: 99.8% probable that validation passes – as desired, i.e., validation should pass; red ellipse 

bounded by light blue and blue ellipses, i.e., Equation (D.3-1) satisfied 

The corresponding error covariance matrices for the above example are generated (simulated) in the 

pseudo-code at the end of this section (option = 1).  Specifically, the actual (true) error covariance 

matrix is equal to: 𝑐𝑜𝑣_𝑎𝑐𝑡𝑢𝑎𝑙 = [
1 0
0 4

] and was used to generate all independent samples of 

horizontal error.  It was also subsequently scaled by sigma deviations equal to -0.15 and +0.20 to yield 

the corresponding light blue and blue ellipses in the above figure, respectively.   

The predicted error covariance matrix is equal to: 𝑐𝑜𝑣 = [
0.9099 0.2358
0.2358 3.6026

] and was used in the 

computation of the predicted radials at the three different probability levels (99, 90, and 50%).  It 

corresponds to the red ellipse in the above figure.  The predicted error covariance was generated by 

scaling the actual error covariance matrix by a sigma deviation (aka sig_factor) of -0.05 and 

subsequently rotating it by theta = -0.03 degrees. 
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Figure D.3-2: 0 % probable that validation passes – as desired, i.e., validation should fail; red ellipse not 

bounded (below) by light blue ellipse, i.e., left side of Equation (D.3-2) satisfied 

 

Figure D.3-3: 2.0 % probable that validation passes – as desired, i.e., validation should fail: red ellipse 

not bounded (above) by blue ellipse, i.e., right side of Equation (D.3-2) satisfied 
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Figure D.3-4: 28.6 % probable that validation passes (roll-off range); neither Equation (D.3-1) or 

Equation (D.3-2) satisfied 

 

Figure D.3-5: 69.8 % probable that validation passes (roll-off range); neither Equation (D.3-1) or 

Equation (D.3-2) satisfied 
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Figure D.3-6: 98.4 % probable that validation passes– as desired, i.e., validation should pass; red ellipse 

bounded by light blue and blue ellipses, i.e., Equation (D.3-1) satisfied; in this particular case, the 

predicted error covariance matrix is a scalar multiple of the true or actual error covariance matrix – the 

corresponding ellipse has the same shape and orientation as the scaled true ellipses and of course, the 

true ellipse (not shown) 
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Figure D.3-7: 99.8 % probable that validation passes– as desired, i.e., validation should pass; red ellipse 

bounded by light blue and blue ellipses, i.e., Equation (D.3-1) satisfied 

In the above example (pseudo-code, option = 7), the actual (true) error covariance matrix is equal to: 

𝑐𝑜𝑣_𝑎𝑐𝑡𝑢𝑎𝑙 = [
4 2
2 4

] .  The predicted error covariance matrix is equal to: 𝑐𝑜𝑣 = [
5.2602 3.2605
3.2605 5.2603

] . 

 

The non-optimized MATLAB pseudo-code used to compute the confidences corresponding to the above 

figures via Monte Carlo simulation as well as the plots themselves is provided below (the true or actual 

error covariance matrix and the predicted error covariance matrix are specified as well): 

Pseudo-code 
% "TGD2c_hor_norm_error_combined_tests_ellipses_plots"   12/27/16 

  
%Assume medium pred accuracy fidelity; plot scaled true ellipses annd pred  
%ellipses corresponding to their covariance matrices; compute probability of 
%validation success 

  
sample_case_nmbr=3  %values 1-4 correspond to 25,50,100,400 samples,  
                    %respectively 

  
fidel_level_nmbr=2  %values 1-3 correspond to high, medium and low 
                    %fidelity, respectively 

  
nmbr_samples_choices=[25 50  100 400] 
n_samples=nmbr_samples_choices(sample_case_nmbr) 
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fidelity_choices={'high' 'medium' 'low'} 
fidelity=fidelity_choices{fidel_level_nmbr} 

  
%a row in tol_value contains: sample_case_nmbr, fidel_level_nmbr,  
%tol_value_99, tol_value_90, tol_value_50 

  
% for a given number of samples and fidelity (row in tol_value), the  
% corresponding tolerances are default values and cam be adjusted via this  
% program to see results 

  
tol_value=[1    1   90  76  34 
           1    2   84  68  24 
           1    3   76  54  14 
           2    1   93  78  38 
           2    2   88  72  30 
           2    3   82  60  18 
           3    1   95  83  39 
           3    2   90  76  30 
           3    3   84  64  24 
           4    1   97  85  44 
           4    2   95  78  36 
           4    3   85  65  25]; 

                  
loc=find(tol_value(:,1)==sample_case_nmbr & 

tol_value(:,2)==fidel_level_nmbr); 
tol_value_99=tol_value(loc,3)     
tol_value_90=tol_value(loc,4) 
tol_value_50=tol_value(loc,5) 

  
n_real=500  %"hard coded to 500, can be changed if desired 

  
cov_actual=eye(2);    
cov_actual(2,2)=4;  

  
option=7 

  
if(option==1)    %totally within both bounds 
sig_factor=-0.05 
theta=-03 
end 
if(option==2)    %totally inside minimum bound 
sig_factor=-0.35     
theta=-05 
end 
if(option==3)    %totally outside maximum bound 
sig_factor=0.50 
theta=-05 
end 
if(option==4)     %both in and out minimum bound 
sig_factor=-0.10 
theta=-15 
end 
if(option==5)     %both in and out maximum bound 
sig_factor=0.30 
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theta=07 
end 
if(option==6)     %totally within both bounds 
sig_factor=0-0.10 
theta=0 
end 
if(option==7)     %totally within both bounds; also vastly different  
                  %actual covariance than other cases 
    cov_actual(1,1)=4 
    cov_actual(2,2)=4; 
    cov_actual(1,2)=0.5*4; 
    cov_actual(2,1)=cov_actual(1,2); 
    sig_factor=0.10 
    theta=-5 
end 

  
cov_actual 
cov_actual_sqrt=sqrtm(cov_actual) 

  
rot=zeros(2,2); 
rot(1,1)=cosd(theta); 
rot(2,2)=rot(1,1); 
rot(1,2)=-sind(theta); 
rot(2,1)=rot(1,2); 

  
cov=(1+sig_factor)^2*cov_actual; 
cov=rot*cov*rot'; 

  
cov % predicted covariance matrix  

  
d_99=3.035; 
d_90=2.146; 
d_50=1.177;                                    
                %begin appropriate validation processing 

                 
                sum_all=0; 

                 
                for j=1:n_real 

                     
                    sum_99=0; 
                    sum_90=0; 
                    sum_50=0; 

                                
                    for k=1:n_samples 

                         
                        s=cov_actual_sqrt*randn(2,1);%horizontal errors                    

                       
                        e_norm_90=sqrt(s'*cov^-1*s)/d_90;%normalized errors 
                        e_norm_99=(d_90/d_99)* e_norm_90; 
                        e_norm_50=(d_90/d_50)* e_norm_90;               

                        
                       if((e_norm_99<1))  %check if  99% level normalized 
                                          % error test passes 
                           sum_99=sum_99+1; 
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                       end 
                       if((e_norm_90<1)) 
                           sum_90=sum_90+1; 
                       end 
                       if((e_norm_50>1)) 
                           sum_50=sum_50+1; 
                       end 

                       
                    end   % end samples 

                    
                     %check if all three tests pass for this realization: 
                    if(((100*sum_99/n_samples)>tol_value_99)&&...   
                           ((100*sum_90/n_samples)>tol_value_90)&&... 
                           ((100*sum_50/n_samples)>tol_value_50)) 
                        sum_all=sum_all+1; 
                    end 

                     
                end % end realizations 

                            
            results=100*sum_all/n_real   % percent of realizations  
                                           %where all three tests pass 

         
%Plot all three ellipses 
axis_val_x=8; 
axis_val_y=8; 

  
A=(1+0.20)^2*cov_actual; %***************     
nmbr_x=100; 
nmbr_pts=2*nmbr_x+1; 
x1=zeros(nmbr_pts,1); 
y1=zeros(nmbr_pts,1); 
y2=zeros(nmbr_pts,1); 
AI=A^-1; 
a=AI(1,1); 
b=AI(1,2); 
c=AI(2,2); 
d=-2.15^2; 
xlimit=sqrt(-d/(a-b^2/c)); 
dx=xlimit/nmbr_x; 
for i=1:nmbr_pts 
    x1(i,1)=-xlimit+(i-1)*dx; 
    y1(i,1)=-2*(b/c)*x1(i,1); 
    y1(i,1)=y1(i,1)-sqrt(4*(b/c)^2*x1(i,1)^2-4*(a/c)*x1(i,1)^2-4*d/c); 
    y1(i,1)=y1(i,1)/2; 
    y2(i,1)=-2*(b/c)*x1(i,1); 
    y2(i,1)=y2(i,1)+sqrt(4*(b/c)^2*x1(i,1)^2-4*(a/c)*x1(i,1)^2-4*d/c); 
    y2(i,1)=y2(i,1)/2; 
end 
figure(1) 
clf 
hold on 
plot(x1,y1,'b',x1,y2,'b','LineWidth',2) 
axis([-axis_val_x axis_val_x -axis_val_y axis_val_y]) 

  
A=(1-0.15)^2*cov_actual;    %*********************** 
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nmbr_x=100; 
nmbr_pts=2*nmbr_x+1; 
x1=zeros(nmbr_pts,1); 
y1=zeros(nmbr_pts,1); 
y2=zeros(nmbr_pts,1); 
AI=A^-1; 
a=AI(1,1); 
b=AI(1,2); 
c=AI(2,2); 
d=-2.15^2; 
xlimit=sqrt(-d/(a-b^2/c)); 
dx=xlimit/nmbr_x; 
for i=1:nmbr_pts 
    x1(i,1)=-xlimit+(i-1)*dx; 
    y1(i,1)=-2*(b/c)*x1(i,1); 
    y1(i,1)=y1(i,1)-sqrt(4*(b/c)^2*x1(i,1)^2-4*(a/c)*x1(i,1)^2-4*d/c); 
    y1(i,1)=y1(i,1)/2;    
    y2(i,1)=-2*(b/c)*x1(i,1); 
    y2(i,1)=y2(i,1)+sqrt(4*(b/c)^2*x1(i,1)^2-4*(a/c)*x1(i,1)^2-4*d/c); 
    y2(i,1)=y2(i,1)/2; 
end 
plot(x1,y1,'cy',x1,y2,'cy','LineWidth',2); 

  
A=cov;    %********************* 
nmbr_x=100; 
nmbr_pts=2*nmbr_x+1; 
x1=zeros(nmbr_pts,1); 
y1=zeros(nmbr_pts,1); 
y2=zeros(nmbr_pts,1); 
AI=A^-1; 
a=AI(1,1); 
b=AI(1,2); 
c=AI(2,2); 
d=-2.15^2; 
xlimit=sqrt(-d/(a-b^2/c)); 
dx=xlimit/nmbr_x; 
for i=1:nmbr_pts 
    x1(i,1)=-xlimit+(i-1)*dx; 
    y1(i,1)=-2*(b/c)*x1(i,1); 
    y1(i,1)=y1(i,1)-sqrt(4*(b/c)^2*x1(i,1)^2-4*(a/c)*x1(i,1)^2-4*d/c); 
    y1(i,1)=y1(i,1)/2; 

    
    y2(i,1)=-2*(b/c)*x1(i,1); 
    y2(i,1)=y2(i,1)+sqrt(4*(b/c)^2*x1(i,1)^2-4*(a/c)*x1(i,1)^2-4*d/c); 
    y2(i,1)=y2(i,1)/2; 
end 
plot(x1,y1,'r',x1,y2,'r','LineWidth',2); 
axis equal 
hold off  
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 Deriving Normalized Error Tolerances for Use with Scalar 

Accuracy Metrics Psuedo-code 

This appendix supports Section 5.4.3 of the main body of TGD 2c.  The (non-optimized) MATLAB pseudo-

code contained in this appendix was used to derive Figures 5.4.3-1 through 5.4.3-6, the confidence of 

passing all three of the normalized error tests when scalar accuracy metrics are used to normalize 

errors. 

Normalized error tolerance pseudo-code (all 3 tests combined) for horizontal error using scalar 
accuracy metrics 

% "TGD2c_hor_norm_error_via_scalar_acc_metrics_combined_tests"    5/25/16 
  
%Uses CE_90 and scaled versions of same for CE_99 and CE_50 assuming 
%specified actual and specified assumed value for ratio_sqrt_eigen. 
  
%Like "TGD2c_hor_norm_error_combined_tests" except scalar accuracy metrics 
%are used for normalization. 
%Note that these are "approximate" results. 
  
%This program is for horizontal (radial) errors 
  
%Note that toerances below are the defaults, and can be interpolated for 
%either different number of samples or diferent fidelity (sigma range). 
  
%Specify desired number of samples and desired predicted accuracy fidelity  
% level then run sigma_level cases (21).  
  
%"hard code" the desired sample case # and desired fidelity level#: 
  
rse_level=6    %true sqrt eigenvalues ratio equals 1-(level-1)*.1, where  
               %level can equal 1 through 10 
                
ratio_sqrt_eigen=1-(rse_level-1)*.1 
  
rse_level_est_range=3 %estimated max rse_level for scaling when only 
                %CE_90 is computed and without knowledge of rse_level) 
ratio_sqrt_eigen_est_range=1-(rse_level_est_range-1)*.1 
  
sample_case_nmbr=3  %values 1-4 correspond to 25, 50, 100, and 400 samples,  
                    %respectively 
  
fidel_level_nmbr=1  %values 1-3 correspond to high, medium and low fidelity, 
                    %respectively 
  
nmbr_samples_choices=[25 50  100 400] 
n_samples=nmbr_samples_choices(sample_case_nmbr) 
  
fidelity_choices={'high' 'medium' 'low'} 
fidelity=fidelity_choices{fidel_level_nmbr} 
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%a row in tol_value contains:  
%sample_case_nmbr, fidel_level_nmbr,tol_value_99, tol_value_90,tol_value_50 
  
% for a given number of samples and fidelity (row in tol_value),  
% the corresponding tolerances are default values 
  
tol_value=[1    1   90  76  34 
           1    2   84  68  24 
           1    3   76  54  14 
           2    1   93  78  38 
           2    2   88  72  30 
           2    3   82  60  18 
           3    1   95  83  39 
           3    2   90  76  30 
           3    3   84  64  24 
           4    1   97  85  44 
           4    2   95  78  36 
           4    3   85  65  25]; 
                  
loc=find(tol_value(:,1)==sample_case_nmbr & tol_value(:,2)==fidel_level_nmbr); 
tol_value_99=tol_value(loc,3)     
tol_value_90=tol_value(loc,4) 
tol_value_50=tol_value(loc,5) 
  
n_real=500  %"hard coded to 500, can be changed if desired 
  
cov_actual=eye(2);   % horizontal radials; a generic "actual covariance",  
                     % suitable for purpose at hand, since actual cov 
                     % "divided out" (to within sigma toleracnes) in 
                     % computation of normalized errors below; a different 
                     % actual cov can be specified if so desired 
                      
cov_actual(2,2)=ratio_sqrt_eigen^2;                      
  
cov_actual_sqrt=sqrtm(cov_actual); 
  
P=eye(3); 
  
%specified d levels as a function of rse_level: 
  
d_99=[3.035 2.90 2.79 2.72 2.67 2.63 2.61 2.59 2.58 2.58] 
d_90=[2.146 2.04 1.95 1.86 1.79 1.74 1.70 1.67 1.66 1.65] 
d_50=[1.177 1.12 1.06 1.00 0.93 0.87 0.81 0.75 0.71 0.68] 
     
results=zeros(21,1); 
results_CE=zeros(21,1); 
results_CE_s=zeros(21,1);        
             
 

        for i=1:21    % sigma (%) case 
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            sig_factor=-0.5+(i-1)*0.05;             
            cov=(1+sig_factor)^2*cov_actual; 
            P(1,1)=cov(1,1); 
            P(2,2)=cov(2,2); 
                                     
                %begin appropriate validation processing 
                
                sum_all=0; 
                sum_all_CE=0; 
                sum_all_CE_s=0; 
                 
                for j=1:n_real 
                     
                    sum_99=0; 
                    sum_90=0; 
                    sum_50=0           
                    sum_99_CE=0; 
                    sum_90_CE=0; 
                    sum_50_CE=0              
                    sum_99_CE_s=0; 
                    sum_90_CE_s=0; 
                    sum_50_CE_s=0;  
                                
                    for k=1:n_samples 
                         
                        s=cov_actual_sqrt*randn(2,1);   %horizontal errors 
                         
                        e_norm_90=sqrt(s'*cov^-1*s)/d_90(1);%norm errors 
                        e_norm_99=(d_90(1)/d_99(1))* e_norm_90; 
                        e_norm_50=(d_90(1)/d_50(1))* e_norm_90;               
                        
                       %check if  99% level normalized error test passes, 
                       %etc, using predicted radials computed above: 
                       if((e_norm_99<1)) 
                           sum_99=sum_99+1; 
                       end 
                       if((e_norm_90<1)) 
                           sum_90=sum_90+1; 
                       end 
                       if((e_norm_50>1)) 
                           sum_50=sum_50+1; 
                       end 
                                  
                        eh=sqrt(s(1,1)^2+s(2,1)^2); 
                        [CE_90 LE_90]=CE_50_90_99_compute(P,90); 
                     
                        e_norm_90=eh/CE_90;     %normalized errors 
                        e_norm_99=(d_90(rse_level_est_range)/... 
                            d_99(rse_level_est_range))* e_norm_90;     
                        e_norm_50=(d_90(rse_level_est_range)/... 
                            d_50(rse_level_est_range))* e_norm_90;          
                        



NGA.SIG.0026.05_1.0_ACCSPEC 

 
 

221 

                       %check if  99% level normalized error test passes, 
                       %etc, using scalar acc metrics computed above 
                       %assuming an est rse level: 
                       if((e_norm_99<1))   
                           sum_99_CE_s=sum_99_CE_s+1; 
                       end 
                       if((e_norm_90<1)) 
                           sum_90_CE_s=sum_90_CE_s+1; 
                       end 
                       if((e_norm_50>1)) 
                           sum_50_CE_s=sum_50_CE_s+1; 
                       end 
                                     
                        e_norm_90=eh/CE_90;     %normalized errors 
                        e_norm_99=(d_90(rse_level)/... 
                            d_99(rse_level))* e_norm_90;     
                        e_norm_50=(d_90(rse_level)/... 
                            d_50(rse_level))* e_norm_90;  
                        
                       %check if  99% level normalized error test passes, 
                       %etc, using scalar acc metrics computed above 
                       %the actual rse level: 
                       if((e_norm_99<1))  
                           sum_99_CE=sum_99_CE+1; 
                       end 
                       if((e_norm_90<1)) 
                           sum_90_CE=sum_90_CE+1; 
                       end 
                       if((e_norm_50>1)) 
                           sum_50_CE=sum_50_CE+1; 
                       end 
                                     
                        
                    end   % end samples 
                    
                    %check if all three tests pass for this realization: 
                     
                    if(((100*sum_99/n_samples)>tol_value_99)&&...    
                           ((100*sum_90/n_samples)>tol_value_90)&&... 
                           ((100*sum_50/n_samples)>tol_value_50)) 
                        sum_all=sum_all+1; 
                    end 
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                    if(((100*sum_99_CE_s/n_samples)>tol_value_99)&&...    
                           ((100*sum_90_CE_s/n_samples)>tol_value_90)&&... 
                           ((100*sum_50_CE_s/n_samples)>tol_value_50)) 
                        sum_all_CE_s=sum_all_CE_s+1; 
                    end 
                     
                     if(((100*sum_99_CE/n_samples)>tol_value_99)&&...   
                           ((100*sum_90_CE/n_samples)>tol_value_90)&&... 
                           ((100*sum_50_CE/n_samples)>tol_value_50)) 
                        sum_all_CE=sum_all_CE+1; 
                    end 
                     
                end % end realizations 
                            
              results(i,1)=sum_all/n_real;  % percent of realizations  
                                            %where all three tests pass 
              results_CE_s(i,1)=sum_all_CE_s/n_real; % percent of  
                  %realizations where all three tests pass using scaled CE 
              results_CE(i,1)=sum_all_CE/n_real; % percent of realizations  
                     %where all three tests pass using properly computed CE 
         
        end  %end sigma case 
          
%plot 99% and 90% and 50% test results:  
%plot % realization pass test for a the test's specific tolerance 
%value as a function of sigma value;  
  
plot1=zeros(21,1); 
plot2=zeros(21,1); 
plot3=zeros(21,1); 
sig_nmbr=zeros(21,1)  
conf_50=zeros(21,1); %for info only on plot (50% confidence hor line) 
conf_90=zeros(21,1); 
conf_95=zeros(21,1); 
  
for i=1:21 
    sig_nmbr(i,1)=100*(-.5+(i-1)*.05); 
    conf_50(i,1)=50; 
    conf_90(i,1)=90; 
    conf_95(i,1)=95; 
end 
  
for j=1:21 
        plot1(j,1)=100*results(j,1); 
        plot2(j,1)=100*results_CE_s(j,1); 
        plot3(j,1)=100*results_CE(j,1); 
 end 
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figure (1) 
clf  %this clears the figure from the previous run 
hold o  
plot(sig_nmbr,plot1,'b','LineWidth',2); 
plot(sig_nmbr,conf_50,'--m',sig_nmbr,conf_90,'--m',sig_nmbr,conf_95,... 
    '--m','LineWidth',1); 
axis([-50 50 0 100]); 
title(['Normalized horizontal test - radials (b): sample case # '... 
    num2str(sample_case_nmbr) ' fidel case # ' num2str(fidel_level_nmbr)] 
xlabel('sigma % of pred cov relative to actual cov (%)') 
ylabel('% realizations pass all three level tests'); 
hold off 
  
 
 
figure (2) 
clf  %this clears the figure from the previous run 
hold on  
plot(sig_nmbr,plot2,'r','LineWidth',2); 
plot(sig_nmbr,conf_50,'--m',sig_nmbr,conf_90,'--m',sig_nmbr,conf_95,... 
    '--m','LineWidth',1);  
axis([-50 50 0 100]); 
title(['Normalized horizontal test - CE s (b): sample case # '... 
    num2str(sample_case_nmbr) ' fidel case # ' num2str(fidel_level_nmbr)])  
xlabel('sigma % of pred cov relative to actual cov (%)') 
ylabel('% realizations pass all three level tests'); 
hold off 
  
 
 
figure (3) 
clf  %this clears the figure from the previous run 
hold on  
plot(sig_nmbr,plot3,'g','LineWidth',2); 
plot(sig_nmbr,conf_50,'--m',sig_nmbr,conf_90,'--m',sig_nmbr,conf_95,... 
    '--m','LineWidth',1);  
axis([-50 50 0 100]); 
title(['Normalized horizontal test - CE (b): sample case # '... 
    num2str(sample_case_nmbr) ' fidel case # ' num2str(fidel_level_nmbr)])  
xlabel('sigma % of pred cov relative to actual cov (%)') 
ylabel('% realizations pass all three level tests'); 
hold off 
   
 
 
  



NGA.SIG.0026.05_1.0_ACCSPEC 

 
 

224 

figure (4)  
clf  %this clears the figure from the previous run 
hold on 
  
plot(sig_nmbr,plot1,'b',sig_nmbr,plot2,'r',sig_nmbr,plot3,'g',... 
    'LineWidth',2); 
plot(sig_nmbr,conf_50,'--m',sig_nmbr,conf_90,'--m',sig_nmbr,conf_95,... 
    '--m','LineWidth',1); 
axis([-50 50 0 100]); 
title(['Norm horizontal test - radials(b),CEs(r),CE(g): sample case # '... 
    num2str(sample_case_nmbr) ' fidel case # ' num2str(fidel_level_nmbr)]) 
  
xlabel('sigma % of pred cov relative to actual cov (%)') 
ylabel('% realizations pass all three level tests'); 
hold off 
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 Accuracy and Predicted Accuracy Validation Examples 

Pseudo-code 

This Appendix contains the (non-optimized) MATLAB pseudo-code used to generate the examples of 

Sections 5.2.3 and 5.2.4 of the main body of TGD 2c. 

See the following pseudo-code for the actual predicted error covariance matrices simulated (e.g. P1 and 

P2) and corresponding actual (true) error covariance matrices (e.g. P_actual), the latter used to generate 

the independent samples of error. 

Accuracy validation examples and predicted accuracy validation examples pseudo-code: 

%Simulation program for accuracy and predicted accuracy validation examples 
%"TGD2c_commerical_imagery_spec_and_validation_example"; 5/24/16 
  
%This code computes both vertical and horizontal (radial) errors normalized  
%by corresponding predicted scalar accuracy metrics (LEXX, CEXX) and   
%horizontal and 3d radial errors normalized by predicted radials for  
%predicted accuracy validation. 
  
%It also computes the 90% least-upper-bound for vertical and horizontal 
%(radial) error 90% percentiles for accuracy validation. 
  
%the input parameters controlling the simulation are hard-coded for %simplicity 
  
n_samples=100  %Specify desired number of samples 
  
% set assumed actual-to-predicted error covariance matrix scale factor: 
  
sf=0.95^2 %somewhat optimistic predicted accuracy 
%sf=0.8^2  %optimistic predicted accuracy 
%sf=1.03^2  %slightly pessimistic predicted accuracy" 
  
  
%Specify 2 different "basic" actual (true) 3x3 error covariance matrices for  
%"variability" and modelling within "operational constraints"; values  
%essentially arbitrary but must correspond to valid covariance matrices (sym  
%and pos definite) for 3d geolocation errors: 
  
P1=zeros(3,3); 
P1(1,1)=1.2; 
P1(2,2)=1.1; 
P1(3,3)=1.3; 
P1(1,2)=.2*sqrt(P1(1,1)*P1(2,2)); 
P1(2,1)=P1(1,2); 
P1(1,3)=.1*sqrt(P1(1,1)*P1(3,3)); 
P1(3,1)=P1(1,3); 
P1(2,3)=.8*sqrt(P1(2,2)*P1(3,3)); 
P1(3,2)=P1(2,3); 
P1=3*P1; 
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P2=zeros(3,3); 
P2(1,1)=2.2; 
P2(2,2)=1.6; 
P2(3,3)=1.8; 
P2(1,2)=.2*sqrt(P2(1,1)*P2(2,2)); 
P2(2,1)=P2(1,2); 
P2(1,3)=.1*sqrt(P2(1,1)*P2(3,3)); 
P2(3,1)=P2(1,3); 
P2(2,3)=.8*sqrt(P2(2,2)*P2(3,3)); 
P2(3,2)=P2(2,3); 
P2=3*P2; 
  
  
P1  %output their values, their corresponding CE90's, and their eigenvalues 
P2 
[CE_90_P1 LE_90_P1]=CE_50_90_99_compute(P1,90)  
[CE_90_P2 LE_90_P2]=CE_50_90_99_compute(P2,90) 
eig_P1=eig(P1) 
eig_P2=eig(P2) 
%compute sqrt of smallest to largest eigenvalue in upper 2x2 covariance 
%matrix: 
PH1=zeros(2,2); 
PH2=zeros(2,2); 
for ii=1:2 
    for jj=1:2 
        PH1(ii,jj)=P1(ii,jj); 
        PH2(ii,jj)=P2(ii,jj); 
    end 
end 
eig_PH1=eig(PH1) 
ratio1=sqrt(eig_PH1(1)/eig_PH1(2)) 
eig_PH2=eig(PH2) 
ratio2=sqrt(eig_PH2(1)/eig_PH2(2)) 
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%initialize statistical compilations and related variables 
  
dz_samples=zeros(n_samples,1); 
LE_50_samples=zeros(n_samples,1); 
LE_90_samples=zeros(n_samples,1); 
LE_99_samples=zeros(n_samples,1); 
  
dH_samples=zeros(n_samples,1); 
CE_50_samples=zeros(n_samples,1); 
CE_90_samples=zeros(n_samples,1); 
CE_99_samples=zeros(n_samples,1); 
  
dX_samples=zeros(n_samples,1); 
P_50_r_samples=zeros(n_samples,1); 
P_90_r_samples=zeros(n_samples,1); 
P_99_r_samples=zeros(n_samples,1); 
  
PH_50_r_samples=zeros(n_samples,1); 
PH_90_r_samples=zeros(n_samples,1); 
PH_99_r_samples=zeros(n_samples,1); 
  
LE_50_percent=0; 
LE_90_percent=0; 
LE_99_percent=0; 
CE_50_percent=0; 
CE_90_percent=0; 
CE_99_percent=0; 
P_50_r_percent=0; 
P_90_r_percent=0; 
P_99_r_percent=0; 
PH_50_r_percent=0; 
PH_90_r_percent=0; 
PH_99_r_percent=0; 
  
XH=zeros(2,1); 
PH=zeros(2,2); 
xaxis=zeros(n_samples,1); 
y45=zeros(n_samples,1); 
  
  
for i=1:n_samples  %loop over number of samples  (one "realization") 
         
%pick one of the two basic actual covariances and then mod slightly for 
%more realism: 
  
k=mod(i,2); 
P_actual=P2; 
if(k==0) 
    P_actual=P1; 
end 
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%del=0;   %make all the covariances the same 
%del=.05; %mod as a scalar multiple in % 
del=.01; 
for k=1:3 
    d=del*P_actual(k,k)*randn(1,1); 
    P_actual(k,k)=P_actual(k,k)+d; 
end 
temp=eig(P_actual); 
for j=1:3 
    if(temp(j,1)<=0) 
        bad_eigen=temp(j,1)  %check for modified covariance invalid and %printout as warning 
    end 
end 
        
%generates random error samples consistent with actual error covariance 
%matrix: 
X=sqrtm(P_actual)*randn(3,1);   %random 3D errors 
  
  
P=sf*P_actual;  %compute (Mig-type) predicted error covariance matrix for %current error samples 
  
%set actual 2d horizontal errors appropriately 
for j=1:2 
    XH(j,1)=X(j,1); 
end 
%set predicted horizontal error covariance matrix appropriately 
for ii=1:2 
    for jj=1:2 
        PH(ii,jj)=P(ii,jj); 
    end 
end 
  
%compute actual radial errors; 
dX=sqrt(X(1,1)^2+X(2,1)^2+X(3,1)^2); 
dH=sqrt(X(1,1)^2+X(2,1)^2); 
dz=sqrt(X(3,1)^2); 
  
%compute predicted CE50,CE90,CE99 and LE50,LE90,LE99 scalar accuracy metrics: 
%(function assumes full 3x3 %covariance matrix) 
[CE_50 LE_50]=CE_50_90_99_compute(P,50); 
[CE_90 LE_90]=CE_50_90_99_compute(P,90); 
[CE_99 LE_99]=CE_50_90_99_compute(P,99); 
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%compile vertical normalized error results based on scalar acuracy metrics  
%for current sample 
%(note:results same as if used vertical predicted radials) 
dz_samples(i,1)=dz; 
LE_50_samples(i,1)=LE_50; 
LE_90_samples(i,1)=LE_90; 
LE_99_samples(i,1)=LE_99; 
if(dz<=LE_50) 
    LE_50_percent=LE_50_percent+1; 
end 
if(dz<=LE_90) 
    LE_90_percent=LE_90_percent+1; 
end 
if(dz<=LE_99) 
    LE_99_percent=LE_99_percent+1; 
end 
  
%compile horizontal normalized error results based on scalar accuracy metrics  
%for current sample 
dH_samples(i,1)=dH; 
CE_50_samples(i,1)=CE_50; 
CE_90_samples(i,1)=CE_90; 
CE_99_samples(i,1)=CE_99; 
if(dH<=CE_50) 
    CE_50_percent=CE_50_percent+1; 
end 
if(dH<=CE_90) 
    CE_90_percent=CE_90_percent+1; 
end 
if(dH<=CE_99) 
    CE_99_percent=CE_99_percent+1; 
end 
  
%compile (3d) radial normalized error results based on predicted radials for  
%current sample 
P_50_r=dX*1.538/sqrt((X'*(P^-1)*X));   %compute predicted radials 
P_90_r=dX*2.500/sqrt((X'*(P^-1)*X)); 
P_99_r=dX*3.368/sqrt((X'*(P^-1)*X)); 
dX_samples(i,1)=dX; 
P_50_r_samples(i,1)=P_50_r; 
P_90_r_samples(i,1)=P_90_r; 
P_99_r_samples(i,1)=P_99_r; 
if(dX<=P_50_r) 
    P_50_r_percent=P_50_r_percent+1; 
end 
if(dX<=P_90_r) 
    P_90_r_percent=P_90_r_percent+1; 
end 
if(dX<=P_99_r) 
    P_99_r_percent=P_99_r_percent+1; 
end 
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%compile horizontal normalized error results based on predicted radials for  
%current sample 
PH_50_r=dH*1.177/sqrt((XH'*(PH^-1)*XH));    %compute predicted radials 
PH_90_r=dH*2.146/sqrt((XH'*(PH^-1)*XH)); 
PH_99_r=dH*3.035/sqrt((XH'*(PH^-1)*XH)); 
PH_50_r_samples(i,1)=PH_50_r; 
PH_90_r_samples(i,1)=PH_90_r; 
PH_99_r_samples(i,1)=PH_99_r; 
if(dH<=PH_50_r) 
    PH_50_r_percent=PH_50_r_percent+1; 
end 
if(dH<=PH_90_r) 
    PH_90_r_percent=PH_90_r_percent+1; 
end 
if(dH<=PH_99_r) 
    PH_99_r_percent=PH_99_r_percent+1; 
end 
  
max=13;  %13 meters max for x-axis and y_axis 
xaxis(i,1)=(i-1)*max/n_samples; %set up various "boilerplate" plotting info 
y45(i,1)=xaxis(i,1); 
  
end    %end samples loop 
  
%output predicted accuracy results for all three probability-levels 
%for both normalization based on scalar accuracy metrics (first 6 outputs)  
%and normalization based on predicted radials (last 6 outputs); note that 
%passing the correspondsing predicted accuracy validation test requires that  
%the results are greatere than or equal to the specified normalized error  
%tolerance requirements (not included in code) 
  
LE_50_percent=1-LE_50_percent/n_samples  %subtract from 1 since test is  
%"above line", not below line 
LE_90_percent=LE_90_percent/n_samples 
LE_99_percent=LE_99_percent/n_samples 
CE_50_percent=1-CE_50_percent/n_samples 
CE_90_percent=CE_90_percent/n_samples 
CE_99_percent=CE_99_percent/n_samples 
P_50_r_percent=1-P_50_r_percent/n_samples 
P_90_r_percent=P_90_r_percent/n_samples 
P_99_r_percent=P_99_r_percent/n_samples 
PH_50_r_percent=1-PH_50_r_percent/n_samples 
PH_90_r_percent=PH_90_r_percent/n_samples 
PH_99_r_percent=PH_99_r_percent/n_samples 
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%(Note: results for validation of accuracy based on order statistics are  
%generated after code to output Plot #14 below) 
  
%Plot results in terms of un-normalized error samples vs. appropriate  
%predicted accuracy samples (predicted scalar accuracy metric or radial at  
%appropriate probability level) 
  
figure (1) 
clf  %this clears the figure from the previous run 
hold on 
scatter(LE_50_samples,dz_samples) 
plot(xaxis,y45); 
axis([0 max 0 max]); 
title('z radial error samples vs. predicted 50% LE') 
xlabel('predicted LE 50 (m)') 
ylabel('radial z error (m)'); 
hold off 
  
figure (2) 
clf 
hold on 
scatter(LE_90_samples,dz_samples) 
plot(xaxis,y45); 
axis([0 max 0 max]); 
title('z radial error samples vs. predicted 90% LE') 
xlabel('predicted LE 90 (m)') 
ylabel('radial z error (m)'); 
hold off 
  
figure (3) 
clf 
hold on 
scatter(LE_99_samples,dz_samples) 
plot(xaxis,y45); 
axis([0 max 0 max]); 
title('z radial error samples vs. predicted 99% LE') 
xlabel('predicted LE 99 (m)') 
ylabel('z radial error (m)'); 
hold off 
  
  
figure (4) 
clf 
hold on 
scatter(CE_50_samples,dH_samples) 
plot(xaxis,y45); 
axis([0 max 0 max]); 
title('horizontal radial error samples vs. predicted 50% CE') 
xlabel('predicted CE 50 (m)') 
ylabel('horizontal radial error (m)'); 
hold off 
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figure (5) 
clf 
hold on 
scatter(CE_90_samples,dH_samples) 
plot(xaxis,y45); 
axis([0 max 0 max]); 
title('horizontal radial error samples vs. predicted 90% CE') 
xlabel('predicted CE 90 (m)') 
ylabel('horizontal radial error (m)'); 
hold off 
  
figure (6) 
clf 
hold on 
scatter(CE_99_samples,dH_samples) 
plot(xaxis,y45); 
axis([0 max 0 max]); 
title('horizontal radial error samples vs. predicted 99% CE 99') 
xlabel('predicted CE 99 (m)') 
ylabel('horizontal radial error (m)'); 
hold off 
  
figure (7) 
clf 
hold on 
scatter(P_50_r_samples,dX_samples) 
plot(xaxis,y45); 
axis([0 max 0 max]); 
title('radial (3d) error samples vs. predicted 50% ellipsoid radial') 
xlabel('predicted 50% ellipsoid radial (m)') 
ylabel('radial (3d) error (m)'); 
hold off 
  
figure (8) 
clf 
hold on 
scatter(P_90_r_samples,dX_samples) 
plot(xaxis,y45); 
axis([0 max 0 max]); 
title('radial (3d) error samples vs. predicted 90% ellipsoid radial') 
xlabel('predicted 90% ellipsoid radial (m)') 
ylabel('radial (3d) error (m)'); 
hold off 
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figure (9) 
clf 
hold on 
scatter(P_99_r_samples,dX_samples) 
plot(xaxis,y45); 
axis([0 max 0 max]); 
title('radial (3d) error samples vs. predicted 99% ellipsod radial') 
xlabel('predicted 99% ellipsoid radial (m)') 
ylabel('radial (3d) error (m)'); 
hold off 
  
figure (10) 
clf 
hold on 
scatter(PH_50_r_samples,dH_samples) 
plot(xaxis,y45); 
axis([0 max 0 max]); 
title('horizontal radial error samples vs. predicted 50% ellipse radial') 
xlabel('predicted 50% ellipse radial (m)') 
ylabel('horizontal radial error (m)'); 
hold off 
  
figure (11) 
clf 
hold on 
scatter(PH_90_r_samples,dH_samples) 
plot(xaxis,y45); 
axis([0 max 0 max]); 
title('horizontal radial error samples vs. predicted 90% ellipse radial') 
xlabel('predicted 90% ellipse radial (m)') 
ylabel('horizontal radial error (m)'); 
hold off 
  
figure (12) 
clf 
hold on 
scatter(PH_99_r_samples,dH_samples) 
plot(xaxis,y45); 
axis([0 max 0 max]); 
title('horizontal radial error samples vs. predicted 99% ellipse radial') 
xlabel('predicted 99% ellipse radial (m)') 
ylabel('horizontal radial error (m)'); 
hold off 
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%add the "three line" plots for predicted radials only;  
  
y_small_slope=zeros(n_samples,1); 
y_large_slope=zeros(n_samples,1); 
  
for i=1:n_samples 
y_small_slope(i,1)=(1.538/2.500)*xaxis(i,1); 
y_large_slope(i,1)=(3.368/2.500)*xaxis(i,1); 
end 
  
figure (13) 
clf 
hold on 
scatter(P_90_r_samples,dX_samples) 
plot(xaxis,y45,'b'); 
plot(xaxis,y_small_slope,'r'); 
plot(xaxis,y_large_slope,'m'); 
axis([0 max 0 max]); 
title('radial (3d) errors samples vs. predicted 90% ellipsoid radial: 50%,… 90%, 99% lines (r, b, m)') 
xlabel('predicted 90% ellipsoid radial (m)') 
ylabel('radial (3d) error (m)'); 
hold off 
   
y_small_slope=zeros(n_samples,1); 
y_large_slope=zeros(n_samples,1); 
cH_above_line1=0; 
cH_below_line2=0; 
cH_below_line3=0; 
  
for i=1:n_samples 
y_small_slope(i,1)=(1.177/2.146)*xaxis(i,1); 
y_large_slope(i,1)=(3.035/2.146)*xaxis(i,1); 
end 
   
figure (14) 
clf 
hold on 
scatter(PH_90_r_samples,dH_samples) 
plot(xaxis,y45,'b'); 
plot(xaxis,y_small_slope,'r'); 
plot(xaxis,y_large_slope,'m'); 
axis([0 max 0 max]); 
title('90% 2D Error Ellipse samples: 50% line (r), 90% line (b), 99% line… (m)') 
xlabel('predicted 90% Ellipse radial (aka 90% predicted horizontal radial) (m)') 
ylabel('horizontal radial error (m)'); 
hold off 
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%ORDER STATISTIC RESULTS FOR VALDIDATION OF ACCURACY 
  
%assume n_samples=100; 
%order sample 95 for lub of 90th percentile; order sample 90 for best  
%estimate of 90th percentile 
%(see TGD2b for order sample indices assuming a different number of samples) 
  
sorted_dz=sort(dz_samples); 
sorted_dH=sort(dH_samples); 
sorted_dX=sort(dX_samples); 
  
lub_dz=sorted_dz(95,1) 
lub_dH=sorted_dH(95,1) 
lub_dX=sorted_dX(95,1) 
  
best_est_dz=sorted_dz(90,1) 
best_est_dH=sorted_dH(90,1) 
best_est_dX=sorted_dX(90,1) 
  
%note that passing the corresponding accuracy validation test requires that  
%the a lub computed above is less than the corresponding specified 
%requirement (not included in code) 
  
lub_dz_p=zeros(n_samples,1); 
lub_dH_p=zeros(n_samples,1); 
lub_dX_p=zeros(n_samples,1); 
be_dz_p=zeros(n_samples,1); 
be_dH_p=zeros(n_samples,1); 
be_dX_p=zeros(n_samples,1); 
  
  
samp=zeros(n_samples,1); 
for i=1:n_samples 
    samp(i,1)=i; 
    lub_dz_p(i,1)=lub_dz; 
    lub_dH_p(i,1)=lub_dH; 
    lub_dX_p(i,1)=lub_dX; 
    be_dz_p(i,1)=best_est_dz; 
    be_dH_p(i,1)=best_est_dH; 
    be_dX_p(i,1)=best_est_dX; 
end 
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figure (15)                  
clf 
hold on 
scatter(samp,dz_samples) 
plot(samp,lub_dz_p,'m',samp,be_dz_p,'--r'); 
axis([1 100 0 max]); 
title('vertical (radial) error samples; lub (m), best est (r)'); 
xlabel('sample number') 
ylabel('error (m)'); 
hold off 
   
figure (16)                  
clf 
hold on 
scatter(samp,dH_samples) 
plot(samp,lub_dH_p,'m',samp,be_dH_p,'--r') 
axis([1 100 0 max]); 
title('horizontal (radial) error sample; lub (m), best est (r)') 
xlabel('sample number') 
ylabel('error (m)'); 
hold off 
   
figure (17)                  
clf 
hold on 
scatter(samp,dX_samples); 
plot(samp,lub_dX_p,'m',samp,be_dX_p,'--r') 
axis([1 100 0 max]); 
title('radial (3d) error samples; lub (m), best est (r)') 
xlabel('sample number') 
ylabel('error (m)'); 
hold off 
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 Processing Correlated Error Samples Pseudo-code 

Section G.1 of this appendix contains pseudo-code that supports Section 5.6 and its various sub-

sections.  Section G.2  presents details of further options regarding the algorithm/equation for sub-

method 1 of the representative error samples approach, including applications to vertical and 3d errors.   

G.1 Pseudo-code 

There are 4 sets of (non-optimized) pseudo-code.  The first set of pseudo-code (Section G.1.1) was used 

to generate the histogram results of Section 5.6.1 regarding the importance of using i.i.d. error samples 

in general.  It basically generates uncorrelated (i.i.d.) error samples as well as correlated error samples 

and then implements the baseline accuracy validation code (Sections 4.1/5.1) which uses order statistics 

and assumes the use of i.i.d. error samples.   

The second set of pseudo-code (Section G.1.2) was used to generate the confidence plots for passing all 

three normalized error test, using the “all error samples approach” (n_cor_sample correlated errors per 

i.i.d. sample error) of Section 5.6.3 as the pseudo-code’s external option 1, or the “representative error 

samples” approach of Section 5.6.4 as the pseudo-code’s external option 2, with the pseudo-code’s 

suboptions 1 and 2 corresponding to sub-methods 1 and 2, respectively, of the “representative error 

samples” approach.  Predicted covariance is assumed a function of sigma deviation.  

The third set of pseudo-code (Section G.1.3) was used to generate the specific example corresponding 

to sub-method 1 of the “representative error samples” approach that was presented in Section 5.6.4.1. 

The fourth set of code (Section G.1.4) was used to generate comparison results between sub-methods 

(or sub-options) 1 and 2 of the “representative error samples” approach.  It addresses values of the 

normalized error test and the 90% probability level only for simplicity, which is associated with predicted 

accuracy (validation).  It also presents validation of accuracy results as well.  This pseudo-code supports 

the results of Section 5.6.4.3. 

The various sets of pseudo-code use Monte-Carlo techniques and simulate underlying geolocation errors 

consistent with a multi-variate Gaussian probability distribution.  Although any corresponding 

algorithms that were based on order statistics and corresponding to accuracy (as opposed to predicted 

accuracy) require no such assumption, Monte-Carlo simulation does require an assumed probability 

distribution and multi-variate Gaussian was selected as most appropriate. 
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G.1.1 Importanace of i.i.d. samples in general  

 

Pseudo-code in support of the first part of Section 5.6.1, followed by pseudo-code for the second part of 

that section, i.e., last example of the (correlated sub-collection)  case: 

 

%"TGD2c_cor_sample_effects"         9/29/16 

  
%horizontal errors; 90th percentile; 90% confidence for lub 

  

  
n_samples=60 

  
n_cor_cases=3 

  
cor_cases=zeros(n_cor_cases,1); 

  
cor_cases(1,1)=0; 
cor_cases(2,1)=50; 
cor_cases(3,1)=90; 

  
cor_cases 

  
cov_true=eye(2); 
%eh_90_true=2.141 
ratio=0.8; 
cov_true(2,2)=1.5625;%ratio=0.8 
eh_90_true=1.9472*1.25;%ratio=0.25 

  
cov_true 
eh_90_true 

  
order_be=54 
order_90=58 

  
n_real=1000 

  

     
for i=1:n_cor_cases 

         
        cor=cor_cases(i,1)/100 
        kk=2*n_samples;   
        cov=zeros(kk,kk); 

         
         be=zeros(n_real,1); 
         lub_90=zeros(n_real,1); 
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 for j=1:n_real                     

         
            for k1=1:n_samples 
                for k2=1:n_samples 
                    cor_temp=1; 
                    if(k1~=k2) 
                        cor_temp=cor; 
                    end 
                    cov((k1-1)*2+1,(k2-1)*2+1)=cor_temp*cov_true(1,1); 
                    cov((k1-1)*2+1,(k2-1)*2+2)=cor_temp*cov_true(1,2); 
                    cov((k1-1)*2+2,(k2-1)*2+1)=cor_temp*cov_true(2,1); 
                    cov((k1-1)*2+2,(k2-1)*2+2)=cor_temp*cov_true(2,2); 
                end 
            end 

         
            samples=sqrtm(cov)*randn(kk,1); 
            radial_samples=zeros(n_samples,1); 

         
            for k1=1:n_samples 
                radial_samples(k1,1)=sqrt(samples((k1-

1)*2+1,1)^2+samples((k1-1)*2+2,1)^2); 
            end 

         
            radial_samples=sort(radial_samples); 

     
            be(j,1)=radial_samples(order_be,1); 
            lub_90(j,1)=radial_samples(order_90,1);      

         
        end % end realizations  

         
        %be 
        %lub_90 

         
        lub_90_asc=sort(lub_90); 
        kk=floor(0.10*n_real); 
        lub_90_asc_90=lub_90_asc(kk,1) 

         
        lub_pad=lub_90-eh_90_true*ones(n_real,1); 
        lub_pad=sort(lub_pad); 
        kk=floor(0.90*n_real); 
        lub_pad_90=lub_pad(kk,1); 
        lub__pad_90_rel=lub_pad_90/eh_90_true 

         
        x=0.5:0.1:5.5; 
        figure((i-1)*2+1) 
        %axis([0.5 4.5 0 +inf]); 
        hist(be,x); 
        figure((i-1)*2+2) 
        hist(lub_90,x); 

                 

         
end %cor_cases 
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%"TGD2c_cor_sample_effects_2"         9/29/16 

  
%horizontal errors; 90th percentile; 90% confidence for lub 

  
%alternate 

  

  
n_samples=60 
cor=50 

  
cov_true=eye(2); 
%eh_90_true=2.141 
ratio=0.8; 
cov_true(2,2)=1.5625;%ratio=0.8 
eh_90_true=1.9472*1.25;%ratio=0.25 

  
cov_true 
eh_90_true 

  
order_be=54 
order_90=58 

  
n_real=1000 

  

     
for i=1:1 

         
        cor=cor/100; 
        kk=2*n_samples;   
        cov=zeros(kk,kk); 

         
         be=zeros(n_real,1); 
         lub_90=zeros(n_real,1); 

         
        for j=1:n_real                     

         
            for m=1:6 
            for k1=1+(m-1)*10:1+m*10-1 
                for k2=1+(m-1)*10:1+m*10-1 
                    cor_temp=1; 
                    if(k1~=k2) 
                        cor_temp=cor; 
                    end 
                    cov((k1-1)*2+1,(k2-1)*2+1)=cor_temp*cov_true(1,1); 
                    cov((k1-1)*2+1,(k2-1)*2+2)=cor_temp*cov_true(1,2); 
                    cov((k1-1)*2+2,(k2-1)*2+1)=cor_temp*cov_true(2,1); 
                    cov((k1-1)*2+2,(k2-1)*2+2)=cor_temp*cov_true(2,2); 
                end 
            end 
            end 
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            %cov 

         
            samples=sqrtm(cov)*randn(kk,1); 
            radial_samples=zeros(n_samples,1); 

         
            for k1=1:n_samples 
                radial_samples(k1,1)=sqrt(samples((k1-

1)*2+1,1)^2+samples((k1-1)*2+2,1)^2); 
            end 

         
            radial_samples=sort(radial_samples); 

     
            be(j,1)=radial_samples(order_be,1); 
            lub_90(j,1)=radial_samples(order_90,1);      

         
        end % end realizations  

         
        %be 
        %lub_90 

         
        lub_90_asc=sort(lub_90); 
        kk=floor(0.10*n_real); 
        lub_90_asc_90=lub_90_asc(kk,1) 

         
        lub_pad=lub_90-eh_90_true*ones(n_real,1); 
        lub_pad=sort(lub_pad); 
        kk=floor(0.90*n_real); 
        lub_pad_90=lub_pad(kk,1); 
        lub__pad_90_rel=lub_pad_90/eh_90_true 

         
        x=0.5:0.1:5.5; 
        figure((i-1)*2+1) 
        %axis([0.5 4.5 0 +inf]); 
        hist(be,x); 
        figure((i-1)*2+2) 
        hist(lub_90,x); 

                 

         
end %cor_cases 

 

G.1.2 Confidence plots for passing normalized error tests 

 
% "TGD2c_hor_norm_error_combined_tests_all"   7/19/16 

  
%Confidence that all three probability level test pass for normalized  
%errors,parameterized by specified tolerance values, parameterized by  
%number of i.i.d. samples, as a function of sigma deviation level. 
%Confidence computed as % that all three tests pass taken over numerous  
%(nominally 500 realizations).  Note that these are "approximate" results. 
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%Program used to determine/verify tolerance values that yield at least 90% 
%confidence within desired sigma deviation interval, and drop-off as fast 
%as possible outside of this interval. 

  
%This program is for horizontal (radial) errors.   
%This version is "non-optimized" in support  
%of "fast experimenation".  

  
%In this extended (all) version of the program, number of i.i.d. "regular"  
%samples is extended to a total of samples*n_cor_samples, where the group  
%of n_cor_samples per "regular" samples are correlated by cor.  
%See "TGD2c_hor_norm_error_combined_test" for orginal  
%version and more original  comment statements.  

  
%It has two "external" options for using the extra 
%samples per regular sample:(1) process all n_samples*n_cor_samples samples 
%separately but use non-standard tolerance values, i.e, "All 
%samples approach", and (2) consolidate 
%n_cor_samples regular samples into one representative sample.  This later 
%approach also has two suboptions. 

  
%Finally note that all processing, regardless the method/options  
%designated, computenormalized error at the appropriate probability levels  
%for the correspondonding <1 or >1 tests.  The normalized error can be  
%easily suballocated to the appropriate (non-normalized) radial error and 
%corresponding prodicted radial as well, but is not included in this code 
%which is primarily concerned with plotting the confidence of passing all 
%three normalized error tests vs. sigma deviation 

  

  
ext_option=1 
sub_option=1  %(value corresponds to ext option 2's suboption 1 or 2)  

  
n_cor_samples=6 
cor=0.8 
%cor=0.5      %note that cor=0.5 selected (hard coded) for ext option 1 and  
%100 samples; a form of "customization" of the normalized error tolerances   

  
sample_case_nmbr=3  %values 1-4 correspond to 25,50,100,400 samples,  
                    %respectively; can not be larger than 3 if for 
                    %ext option=1 as customized tolerances have not 
                    %been generated yet for this option 

  
fidel_level_nmbr=1  %values 1-3 correspond to high, medium and low 
                    %fidelity, respectively 

  
nmbr_samples_choices=[25 50  100 400] 
n_samples=nmbr_samples_choices(sample_case_nmbr) 

  
fidelity_choices={'high' 'medium' 'low'} 
fidelity=fidelity_choices{fidel_level_nmbr} 
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%a row in tol_value contains: sample_case_nmbr, fidel_level_nmbr,  
%tol_value_99, tol_value_90, tol_value_50 

  
tol_value=[1    1   90  76  34 
           1    2   84  68  24 
           1    3   76  54  14 
           2    1   93  78  38 
           2    2   88  72  30 
           2    3   82  60  18 
           3    1   95  83  39 
           3    2   90  76  30 
           3    3   84  64  24 
           4    1   97  85  44 
           4    2   95  78  36 
           4    3   85  65  25]; 

                  
loc=find(tol_value(:,1)==sample_case_nmbr & tol_value(:,2)==... 
    fidel_level_nmbr); 

  
if(ext_option==1) %use tolerance corresponding to next highest sample case 
                 %as a temproary way" to customize tolerances  
    loc=find(tol_value(:,1)==(sample_case_nmbr+1) & tol_value(:,2)==... 
        fidel_level_nmbr); 
end 

 
tol_value_99=tol_value(loc,3)     
tol_value_90=tol_value(loc,4) 
tol_value_50=tol_value(loc,5) 

  
n_real=500  %"hard coded to 500, can be changed if desired 

  
cov_actual=eye(2);   % horizontal radials; a generic "actual covariance" 
                     % common to each horizontal error sample 
cov_actual(2,2)=4;   %generalize somewhat to different sigmas 
cov_actual_sqrt=sqrtm(cov_actual); 

  
cov_actual_group=eye(2*n_cor_samples); %covariance for all n_cor_sample 
                                       %corrrelated horizontal errors 

  
for i=1:n_cor_samples 
    for j=1:n_cor_samples 
        for ii=1:2 
            for jj=1:2 
                k=(i-1)*2+ii; 
                l=(j-1)*2+jj; 
                cov_actual_group(k,l)=cov_actual(ii,jj); 
                if(i~=j) 
                    cov_actual_group(k,l)=cor*cov_actual_group(k,l); 
                end 
            end 
        end 
    end 
end 
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cov_actual_group_sqrt=sqrtm(cov_actual_group); 
%cov_actual_group;  
%cov_actual_group_sqrt 

  
d_99=3.035; 
d_90=2.146; 
d_50=1.177; 

     
results=zeros(21,1); 
s_temp=zeros(2,1); 
e_norm_50=zeros(n_cor_samples,1); 
e_norm_90=zeros(n_cor_samples,1); 
e_norm_99=zeros(n_cor_samples,1); 

             
        for i=1:21    % sigma (%) case 

                 
            sig_factor=-0.5+(i-1)*0.05;             
            cov=(1+sig_factor)^2*cov_actual; 

                                     
                %begin appropriate validation processing 

                 
                sum_all=0; 

                 
                for j=1:n_real 

                     
                    sum_99=0; 
                    sum_90=0; 
                    sum_50=0; 

                                
                    for k=1:n_samples 

                         
                        s=cov_actual_group_sqrt*randn(2*n_cor_samples,1); 

                         
                        if(ext_option==1)   %ext option 1 

     
                        for m=1:n_cor_samples 

     
                        s_temp(1,1)=s((m-1)*2+1,1); 
                        s_temp(2,1)=s((m-1)*2+2,1); 

     
                        e_norm_50(m,1)=sqrt(s_temp'*cov^-1*s_temp)/1.177; 
                        e_norm_90(m,1)=sqrt(s_temp'*cov^-1*s_temp)/2.146; 
                        e_norm_99(m,1)=sqrt(s_temp'*cov^-1*s_temp)/3.035; 

                         
                            if((e_norm_99(m,1)<1))  %check if  99% level 
                                          % normalized error test passes 
                                sum_99=sum_99+1; 
                            end 
                            if((e_norm_90(m,1)<1)) 
                                sum_90=sum_90+1; 
                            end 
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                            if((e_norm_50(m,1)>1)) 
                                sum_50=sum_50+1; 
                            end 

                             
                            tot_samp=n_samples*n_cor_samples; 

                             
                        end 

                         
                        end  %end ext_option=1 

                         
                        if(ext_option==2)   %ext option 2 

                         
                        if(sub_option==1)  %Suboption 1 processing  

                         
                        mean_X_samp=zeros(2,1);                   
                        sigma_X_samp=zeros(2,2); 
                        tempX=zeros(2,1);     

     
                        for m=1:n_cor_samples 

     
                        s_temp(1,1)=s((m-1)*2+1,1); 
                        s_temp(2,1)=s((m-1)*2+2,1); 

     
                        mean_X_samp(1,1)=mean_X_samp(1,1)+s_temp(1,1); 
                        mean_X_samp(2,1)=mean_X_samp(2,1)+s_temp(2,1); 
                        end 

                         
                        mean_X_samp=mean_X_samp/n_cor_samples; 

                         
                       for m=1:n_cor_samples                       
                       sigma_X_samp=sigma_X_samp+(s_temp-mean_X_samp)*... 
                           (s_temp-mean_X_samp)';                    
                       end 

                        
                       sigma_X_samp=sigma_X_samp/(n_cor_samples-1); 

                        
                       tempX(1,1)=sqrt(mean_X_samp(1,1)^2+... 
                       sigma_X_samp(1,1)^2); 
                       tempX(2,1)=sqrt(mean_X_samp(2,1)^2+... 
                       sigma_X_samp(2,1)^2); 

                        

                        
                       temp=sqrt(tempX'*(cov^-1)*tempX);  %cov assumed 
                       %common and diagonal across samples, if not take avg 
                       %cov and zero off-diagonals 

                                          
                        avg_50=temp/1.177; 
                        avg_90=temp/2.146; 
                        avg_99=temp/3.035; 

  
                       end   %end suboption 1 unique processing 
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                       if (sub_option==2) %Suboption 2 processing 
                        mean_X_samp=zeros(2,1);                   
                        sigma_X_samp=zeros(2,2); 
                        tempX=zeros(2,1);     

     
                        for m=1:n_cor_samples 

     
                        s_temp(1,1)=s((m-1)*2+1,1); 
                        s_temp(2,1)=s((m-1)*2+2,1); 

     
                        mean_X_samp(1,1)=mean_X_samp(1,1)+s_temp(1,1); 
                        mean_X_samp(2,1)=mean_X_samp(2,1)+s_temp(2,1); 
                        end 

                         
                        mean_X_samp=mean_X_samp/n_cor_samples; 

                         
                       for m=1:n_cor_samples                       
                       sigma_X_samp=sigma_X_samp+(s_temp-mean_X_samp)*... 
                           (s_temp-mean_X_samp)';                    
                       end 
                        

                       sigma_X_samp=sigma_X_samp/(n_cor_samples-1); 

                        
                       tempX(1,1)=sqrt((abs(mean_X_samp(1,1))+0.5*... 
                           sqrt(sigma_X_samp(1,1)))^2); 
                       tempX(2,1)=sqrt((abs(mean_X_samp(2,1))+0.5*... 
                           sqrt(sigma_X_samp(2,2)))^2); 

                                               
                       temp=sqrt(tempX'*(cov^-1)*tempX);  %cov assumed 
                       %common and diagonal across samples, if not take avg 
                       %cov and zero off-diagonals 

                                          
                        avg_50=temp/1.177; 
                        avg_90=temp/2.146; 
                        avg_99=temp/3.035; 

  
                      end %end Suboption2 unique processing 

                         
                            if((avg_99<1))  %check if  99% level normalized 
                                          % error test passes 
                                sum_99=sum_99+1; 
                            end 
                            if((avg_90<1)) 
                                sum_90=sum_90+1; 
                            end 
                            if((avg_50>1)) 
                                sum_50=sum_50+1; 
                            end 

                             
                            tot_samp=n_samples;                         

                            
                        end  %end ext_option=2 

                                        
                    end   % end samples 
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                     %check if all three tests pass for this realization: 
                    if(((100*sum_99/tot_samp)>tol_value_99)&&...   
                           ((100*sum_90/tot_samp)>tol_value_90)&&... 
                           ((100*sum_50/tot_samp)>tol_value_50)) 
                        sum_all=sum_all+1; 
                    end 

                     
                end % end realizations 

                            
            results(i,1)=sum_all/n_real;   % percent of realizations                                           
                                           %where all three tests pass         
        end  %end sigma case 
        

%plot test results: plot % realizations pass all three tests for  
%the tests' specific tolerance values as a function of sigma value;  

  
plot1=zeros(21,1); 
sig_nmbr=zeros(21,1); 

  
conf_50=zeros(21,1); %for info only on plot (50% confidence hor line) 
conf_90=zeros(21,1); 
conf_95=zeros(21,1); 

  
for i=1:21 
    sig_nmbr(i,1)=100*(-.5+(i-1)*.05); 
    conf_50(i,1)=50; 
    conf_90(i,1)=90; 
    conf_95(i,1)=95; 
end 

  
figure (1)  
clf  %this clears the figure from the previous run 
hold on 

  
 for j=1:21 
        plot1(j,1)=100*results(j,1);   
 end 
plot(sig_nmbr,plot1,'b','LineWidth',2); 

  
plot(sig_nmbr,conf_50,'--m',sig_nmbr,conf_90,'--m',sig_nmbr,conf_95,... 
    '--m','LineWidth',1); 

  
axis([-50 50 0 100]); 
title(['Normalized horizontal error (combined) test:'... 
 num2str(sample_case_nmbr) ' sample case # '... 
 num2str(fidel_level_nmbr) ' fidel level #']) 
title(['Normalized horizontal error (combined) test:sample case # '... 
    num2str(sample_case_nmbr) ' fidel case # ' num2str(fidel_level_nmbr)]) 

  
xlabel('sigma % of pred cov relative to actual cov (%)') 
ylabel('% realizations pass all three level tests'); 
hold off 
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G.1.3 Specfic example of sub-method 1 of “representative error samples” approach  

 

%"TGD2c_cor_sample_effects_3"         9/30/16 

  
%horizontal errors; 90th percentile; 90% confidence for lub via  
%representative samples (sub-method 1) 

  
%not efficient code so as to print intermediate results 

  
%also perform predicted accuracy validation using representative samples 

  
n_cor_groups=60 
n_cor_samples=6 

  
cor=90 

  
cov_true=eye(2); 
%eh_90_true=2.141 
ratio=0.8; 
cov_true(2,2)=1.5625;%ratio=0.8 
eh_90_true=1.9472*1.25;%ratio=0.25 

  
cov_true 
eh_90_true 

  
order_be=54   %per n_cor_groups after representative samples computed 
order_90=58 

  
%in order to pass valdiation using 60 i.i.d. samples and high pred 
%aaccuracy fidelity need approximately Y_h_99=93 ,Y_h_90=78, Y_h_50=38 per 
%interpolation (really not needed) of Table 4.2-1: 

  
cov_pred=(1-0.03)^2*cov_true  %assume sigma deviaton -3%, should pass 
%cov_pred=(1-0.25)^2*cov_true   % should fail pred acc valid 
%cov_pred=(1+0.25)^2*cov_true   % should fail pred acc valid 

  
Y_h_99=0.93 
Y_h_90=0.79 
Y_h_50=0.38 

  
rep_radial=zeros(n_cor_groups,1); 
rep_sample_mean_x=zeros(n_cor_groups,1); 
rep_sample_mean_y=zeros(n_cor_groups,1); 
rep_sample_sigma_x=zeros(n_cor_groups,1); 
rep_sample_sigma_y=zeros(n_cor_groups,1); 

  
rep_horiz=zeros(2,n_cor_groups); 

  
cor=cor/100; 
kk=2*n_cor_samples;   
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for i=1:n_cor_groups 

  
        %generate samples and sample stats for each cor group 

      
        cov=zeros(kk,kk); 

                           
            for k1=1:n_cor_samples 
                for k2=1:n_cor_samples 
                    cor_temp=1; 
                    if(k1~=k2) 
                        cor_temp=cor; 
                    end 
                    cov((k1-1)*2+1,(k2-1)*2+1)=cor_temp*cov_true(1,1); 
                    cov((k1-1)*2+1,(k2-1)*2+2)=cor_temp*cov_true(1,2); 
                    cov((k1-1)*2+2,(k2-1)*2+1)=cor_temp*cov_true(2,1); 
                    cov((k1-1)*2+2,(k2-1)*2+2)=cor_temp*cov_true(2,2); 
                end 
            end 

       
            samples=sqrtm(cov)*randn(kk,1); 

             
            samples_x=zeros(n_cor_samples,1); 
            samples_y=zeros(n_cor_samples,1); 

             
            sum_x=0; 
            sum_y=0; 
            for k1=1:n_cor_samples 
                samples_x(k1,1)=samples((k1-1)*2+1,1); 
                samples_y(k1,1)=samples((k1-1)*2+2,1); 
                sum_x=sum_x+samples_x(k1,1); 
                sum_y=sum_y+samples_y(k1,1); 
            end 
            sample_mean_x=sum_x/n_cor_samples; 
            sample_mean_y=sum_y/n_cor_samples; 
            sum_x=0; 
            sum_y=0; 
            for k1=1:n_cor_samples 
                sum_x=sum_x+(samples((k1-1)*2+1,1)-sample_mean_x)^2; 
                sum_y=sum_y+(samples((k1-1)*2+2,1)-sample_mean_y)^2; 
            end 
            sample_sigma_x=sqrt(sum_x/(n_cor_samples-1)); 
            sample_sigma_y=sqrt(sum_y/(n_cor_samples-1)); 

            
           rep_radial_sample=sqrt(sample_mean_x^2+sample_sigma_x^2+... 
               sample_mean_y^2+sample_sigma_y^2); 

            
           if(i==1||i==2||i==60) 
               i 
               samples_x 
               samples_y 
           end 

            
           rep_sample_mean_x(i,1)=sample_mean_x; 
           rep_sample_mean_y(i,1)=sample_mean_y; 
           rep_sample_sigma_x(i,1)=sample_sigma_x; 
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           rep_sample_sigma_y(i,1)=sample_sigma_y; 
           rep_horiz(1,i)=sqrt(sample_mean_x^2+sample_sigma_x^2); 
           rep_horiz(2,i)=sqrt(sample_mean_y^2+sample_sigma_y^2); 
           rep_radial(i,1)=rep_radial_sample; 

                        
end 

  

  
rep_sample_mean_x 
rep_sample_mean_y 
rep_sample_sigma_x 
rep_sample_sigma_y 
rep_radial 

  
%rep_horiz 

  
rep_radial_sort=sort(rep_radial); 
%compute accuracy validation results using rep hor radial error samples: 
be=rep_radial_sort(54) 
lub_90=rep_radial_sort(58) 

         
%now perform predicted accuracy validation using rep hor radial error 
%samples: 

  
eX=zeros(2,1); 
norm_rad_at_99=zeros(n_cor_groups,1); 
norm_rad_at_90=zeros(n_cor_groups,1); 
norm_rad_at_50=zeros(n_cor_groups,1); 

  
sum1=0; 
sum2=0; 
sum3=0; 

  
for i=1:n_cor_groups 
 eX(1,1)=rep_horiz(1,i);    
 eX(2,1)=rep_horiz(2,i); 
 rad=rep_radial(i,1); 
 norm_rad_at_99(i,1)=rad/(3.035*rad*(eX'*cov_pred^-1*eX)^-0.5); 
 if(norm_rad_at_99(i,1)<1) 
     sum1=sum1+1; 
 end 
 norm_rad_at_90(i,1)=rad/(2.146*rad*(eX'*cov_pred^-1*eX)^-0.5); 
 if(norm_rad_at_90(i,1)<1) 
     sum2=sum2+1; 
 end 
 norm_rad_at_50(i,1)=rad/(1.177*rad*(eX'*cov_pred^-1*eX)^-0.5); 
 if(norm_rad_at_50(i,1)>1) 
     sum3=sum3+1; 
 end 
end 
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%norm_rad_at_99 
%norm_rad_at_90 
%norm_rad_at_50 

  
pass_99_test=sum1/n_cor_groups 
pass_90_test=sum2/n_cor_groups 
pass_50_test=sum3/n_cor_groups 

  
if(pass_99_test>=Y_h_99) 
    pass_99='true' 
end 
if(pass_90_test>=Y_h_90) 
    pass_90='true' 
end 
if(pass_50_test>=Y_h_50) 
    pass_50='true' 
end 

 

G.1.4 Comparion of sub-method results of the “representative error samples“ approach 

 
% "TGD2c_hor_norm_representative_error_2_suboptions"    7/19/16 

  
%This program investigates the effect on {probability of passing 90% 
%probability-level test with a 90% confidence} of the two suboptions for 
%the representative error approach for handling correlated samples  
%as a function of the correlation of the n_cor_samples (specifiable) per  
%original i.i.d samples, the latter assumed to equal 100, but specifiable.   
%There are also 500 realizations, but specifiable as well.  This program  
%is for horizontal errors. 

  
%It also computes lub_h_90 (and best estimate be) accuracy based on  
%order samples using the represententative i.i.d. errors vs. original i.i.d.  
%errors, done for both suboptions and assumes 100 original iid samples for  
%lub; true predicted (best estimate)CE90 equals (1.7371)*2m=3.47 since  
%sqrt_ratio_eigen=0.5.  Actually average lub value and avg be value  
%is computed over realization and results presented vs. correlation. 

  

  
n_iid_samples=100 

  
n_cor_samples=6  %number of cor samples per iid sample yielding 
%a representative iid sample (samples part of "correlation sub-collection")   

  
if(n_iid_samples~=100) 
  warn='not 100 samples, lub incorrect' 
end 

  
n_cor_cases=6  %number of different correlation values cases 

  
sample_sigma_bias_flag=0  %if 1, compute sample_sigma as biased estimate 
%(computation involves divide by n instead of (n-1)) for suboption 1 
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n_real=500 

  
cov_actual=eye(2);   % horizontal radials; a generic "actual covariance" 
                     % common to each horizontal error sample; 
                     % assumed same as predicted covariance cov 
cov_actual(2,2)=4;   %generalize somewhat to different sigmas 
%cov_actual(1,2)=1;   %make non-diagonal 
%cov_actual(2,1)=1;   %make non-diagonal 
cov=cov_actual; 
cov_actual_sqrt=sqrtm(cov_actual); 

  
cov_actual_group=eye(2*n_cor_samples); %covariance for all n_cor_sample 
                 %corrrelated horizontal error, actual calues set in code 

  
results_1=zeros(n_cor_cases,1); 
results_2=zeros(n_cor_cases,1); 

  
avg_acc_order_rep_1_lub=zeros(n_cor_cases,1); 
avg_acc_order_rep_2_lub=zeros(n_cor_cases,1); 
avg_acc_order_orig_lub=zeros(n_cor_cases,1); 
avg_acc_order_rep_1_be=zeros(n_cor_cases,1); 
avg_acc_order_rep_2_be=zeros(n_cor_cases,1); 
avg_acc_order_orig_be=zeros(n_cor_cases,1); 

  
    for j=1:n_cor_cases 

         
        cor=(j-1)/(n_cor_cases-1); 
        if(cor==1) 
            cor=0.999; 
        end 

         
        for i1=1:n_cor_samples 
            for j1=1:n_cor_samples 
                for i2=1:2 
                    for j2=1:2 
                        k=(i1-1)*2+i2; 
                        l=(j1-1)*2+j2; 
                        cov_actual_group(k,l)=cov_actual(i2,j2); 
                        if(i1~=j1) 
                           cov_actual_group(k,l)=cor*cov_actual_group(k,l); 
                        end 
                    end 
                end 
            end 
        end 

        
        cov_actual_group_sqrt=sqrtm(cov_actual_group); 

         
        temp_results_1=zeros(n_real,1); 
        temp_results_2=zeros(n_real,1); 
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        for m=1:n_real   

         
            sum_90_1=0; 
            sum_90_2=0; 

             
            samples_rep_1=zeros(n_iid_samples,1); 
            samples_rep_2=zeros(n_iid_samples,1); 
            samples_orig=zeros(n_iid_samples,1); 

                    
        for k=1:n_iid_samples 

             
           s=cov_actual_group_sqrt*randn(2*n_cor_samples,1); %cor hor error 
                                                             %samples          
           s_temp=zeros(2,1); 
           mean_X_samp=zeros(2,1);                   
           sigma_X_samp=zeros(2,2); 
           tempX=zeros(2,1);               

                          
           %for accuracy computation 
           samples_orig(k,1)=sqrt(s(1,1)^2+s(2,1)^2); 

            

     
              for ij=1:n_cor_samples %compute sample stats over cor errors: 

     
                  s_temp(1,1)=s((ij-1)*2+1,1); 
                  s_temp(2,1)=s((ij-1)*2+2,1); 

     
                  mean_X_samp(1,1)=mean_X_samp(1,1)+s_temp(1,1); 
                  mean_X_samp(2,1)=mean_X_samp(2,1)+s_temp(2,1); 

                   
              end 

                         
              mean_X_samp=mean_X_samp/n_cor_samples; 

                         
              for ij=1:n_cor_samples %compute sample stats over cor errors  

                   
              sigma_X_samp=sigma_X_samp+(s_temp-mean_X_samp)*... 
                           (s_temp-mean_X_samp)';  

                        
              end 

               
              sigma_X_samp=sigma_X_samp/(n_cor_samples); %suboption 1 biased 

estimate 
              if(sample_sigma_bias_flag~=1) 
                  sigma_X_samp=sigma_X_samp*(n_cor_samples/(n_cor_samples-

1)); 
              end 

               

               
              %Suboption 1: 

                        
              tempX(1,1)=sqrt(mean_X_samp(1,1)^2+... 
                           sigma_X_samp(1,1)); 
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              tempX(2,1)=sqrt(mean_X_samp(2,1)^2+... 
                           sigma_X_samp(2,2)); 

                        
              temp=sqrt(tempX'*(cov^-1)*tempX);  % cov assumed 
                       %common and diagonal across samples, if not take avg 
                       %cov and zero off-diagonals 

                                          

                    
              avg_90=temp/2.146; 

               
              if((avg_90<1))  %chek if representative i.i.d sample passed 
                  sum_90_1=sum_90_1+1; 
              end 

               
              %representative samples for accuracy 

               
              samples_rep_1(k,1)=sqrt(tempX(1,1)^2+tempX(2,1)^2); 

               
              %Suboption 2:   

               

                   
             sigma_X_samp=(n_cor_samples/(n_cor_samples-1))*sigma_X_samp; 

              
             if(sample_sigma_bias_flag~=1)%check suboption 1 bias flag 
                  sigma_X_samp=sigma_X_samp*((n_cor_samples-

1)/n_cor_samples); 
              end 

              
              tempX(1,1)=sqrt((abs(mean_X_samp(1,1))+0.5*... 
                           sqrt(sigma_X_samp(1,1)))^2); 
              tempX(2,1)=sqrt((abs(mean_X_samp(2,1))+0.5*... 
                           sqrt(sigma_X_samp(2,2)))^2);          

                        
              temp=sqrt(tempX'*(cov^-1)*tempX);  %cov assumed 
                       %common and diagonal across samples, if not take avg 
                       %cov and zero off-diagonals 

                                          

                    
              avg_90=temp/2.146;           

                         
              if((avg_90<1))  %chek if representative i.i.d sample passed 
                  sum_90_2=sum_90_2+1; 
              end 

                        
               %representative samples for accuracy 

               
              samples_rep_2(k,1)=sqrt(tempX(1,1)^2+tempX(2,1)^2); 

               
        end %end loop over i.i.d.samples 

                         
        temp_results_1(m,1)=sum_90_1/n_iid_samples; 
        temp_results_2(m,1)=sum_90_2/n_iid_samples; 
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        samples_rep_1=sort(samples_rep_1); 
        samples_rep_2=sort(samples_rep_2); 
        samples_orig=sort(samples_orig); 
        ii=95;%assumes 100 samples 

                 
       avg_acc_order_rep_1_lub(j,1)= 

avg_acc_order_rep_1_lub(j,1)+samples_rep_1(ii ; 
       avg_acc_order_rep_2_lub(j,1)= 

avg_acc_order_rep_2_lub(j,1)+samples_rep_2(ii); 
        

avg_acc_order_orig_lub(j,1)=avg_acc_order_orig_lub(j,1)+samples_orig(ii); 

        
       ii=n_iid_samples*0.90; 
       avg_acc_order_rep_1_be(j,1)= 

avg_acc_order_rep_1_be(j,1)+samples_rep_1(ii); 
       avg_acc_order_rep_2_be(j,1)= 

avg_acc_order_rep_2_be(j,1)+samples_rep_2(ii); 
       

avg_acc_order_orig_be(j,1)=avg_acc_order_orig_be(j,1)+samples_orig(ii); 

                     
       end % end loop over realizations 

        
       avg_acc_order_rep_1_lub(j,1)= avg_acc_order_rep_1_lub(j,1)/n_real; 
       avg_acc_order_rep_2_lub(j,1)= avg_acc_order_rep_2_lub(j,1)/n_real; 
       avg_acc_order_orig_lub(j,1)=avg_acc_order_orig_lub(j,1)/n_real; 
       avg_acc_order_rep_1_be(j,1)= avg_acc_order_rep_1_be(j,1)/n_real; 
       avg_acc_order_rep_2_be(j,1)= avg_acc_order_rep_2_be(j,1)/n_real; 
       avg_acc_order_orig_be(j,1)=avg_acc_order_orig_be(j,1)/n_real; 

            
        ij=floor(0.9*n_real);  
        temp_results=sort(temp_results_1,'descend');  
        results_1(j,1)=temp_results(ij,1); %the percent of representative iid 
         %samples passing the 90% probability normalized error test with 
         %at least 90% condfidence for cor case j and suboption 1 
        temp_results=sort(temp_results_2,'descend'); 
        results_2(j,1)=temp_results(ij,1); %suboption 2 

                   
    end   %end loop over cor cases 

     
    avg_acc_order_rep_1_lub 
    avg_acc_order_rep_2_lub 
    avg_acc_order_orig_lub 
    avg_acc_order_rep_1_be 
    avg_acc_order_rep_2_be 
    avg_acc_order_orig_be 

     
figure (1)  
clf  %this clears the figure from the previous run 
hold on 
plot1=100*results_1; 
plot2=100*results_2; 
cor_x=zeros(n_cor_cases,1); 
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 for j=1:n_cor_cases 
        cor_x(j,1)=(j-1)*.2;       
 end 
plot(cor_x,plot2,'r',cor_x,plot1,'b','LineWidth',2); 
%plot(cor_x,plot1,'r',cor_x,plot3,'g','LineWidth',2); 
axis([0 1 50 100]); 
title('Norm hor error test: suboption1(b), suboption2(r)') 
xlabel('correaltion of n cor samples per iid sample') 
ylabel('% realizations pass 90% probability normalized error test'); 
hold off 

 

 

G.2 Options for sub-method 1 of the representative error samples approach 

Predicted covariance matrix 

The algorithm/equations for sub-method 1 of the “representative error samples” approach were 

presented as Equation (5.6.4.1-1) for horizontal error samples.  It assumed the use of a common 

diagonal predicted error covariance for all of the error samples from the same sub-collection.  If the 

corresponding predicted error covariance matrices are not common, simply use their average as an 

approximation.  This approximation only affects the validation of predicted accuracy – it has no effect on 

the validation of accuracy as the predicted error covariance is not used.  Since the error samples 

correspond to the same set of sensor data, the error covariance matrices are expected to be nearly the 

same in a given sub-collection; hence the effects of the approximation should be minimal.  Furthermore, 

“diagonalize” the resultant predicted error covariance, i.e., ignore any resultant off-diagonal elements – 

simply use the resultant square-roots of the diagonal elements, 𝜎𝑥 and 𝜎𝑦, per the algorithm. 

(A potential issue concerns the above diagonalization if the corresponding predicted error covariance 

matrix eigenvalues are significantly different (ratio of the square-root of the smaller to larger eigenvalue 

approximately less than nominally 0.5) and the absolute value of the covariance matrix correlation 

coefficient between the x and y error components too large  (nominally greater than 0.5).  This is a 

potential area for future research.) 

Algorithm/Equation (5.6.4.1-1) changes for vertical  error samples 

 Compute the sample mean and sample standard deviation about the                           (G-2) 

sample mean for each error component over the 𝑘 samples of 𝜖𝑧: 𝑚𝑒𝑎𝑛_𝑧, 𝑠𝑖𝑔𝑚𝑎_𝑧, 

o both computation of the sample mean and sample standard deviation are unbiased 

estimates – see Section 5.2.1 of TGD 2b for the explicit calculations   

 𝑒𝑣 = ((𝑚𝑒𝑎𝑛_𝑧)2 + (𝑠𝑖𝑔𝑚𝑎_𝑧)2)
1

2 

 𝑒𝑣_𝑛𝑜𝑟𝑚 = (((𝑚𝑒𝑎𝑛_𝑧)2 + (𝑠𝑖𝑔𝑚𝑎_𝑧)2)/𝜎𝑧
2)1/2 

 𝜖𝑣_𝑛𝑜𝑟𝑚99 = 𝜖𝑣_𝑛𝑜𝑟𝑚/2.576, 𝜖𝑣_𝑛𝑜𝑟𝑚90 = 𝜖𝑣_𝑛𝑜𝑟𝑚/1.645, 𝜖𝑣_𝑛𝑜𝑟𝑚50 = 𝜖𝑣_𝑛𝑜𝑟𝑚/0.674 

 test: 𝜖𝑣_𝑛𝑜𝑟𝑚99 < 1, 𝜖𝑣_𝑛𝑜𝑟𝑚90 < 1, and 𝜖𝑣_𝑛𝑜𝑟𝑚50 > 1 

 𝑟𝑒𝑝_𝑝𝑟𝑒𝑑_𝑟𝑎𝑑𝑖𝑎𝑙𝑋𝑋 = 𝜖𝑣_𝑛𝑜𝑟𝑚𝑋𝑋/ 𝜖𝑣, for plotting  

 In addition, 𝜖𝑣_𝑛𝑜𝑟𝑚𝑋𝑋 = 𝑒𝑣/𝐿𝐸_𝑋𝑋, where 𝑋𝑋 = 99,90,50, if scalar accuracy metrics are to 

be used 
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Proceed with baseline accuracy and predicted accuracy validation for vertical errors using the resultant 
vertical radial error 𝑒𝑣 and the normalized vertical radial errors at the three different probability levels 
that correspond to the representative vertical error sample from each of the correlated sub-collections. 
 
Algorithm/Equation (5.6.4.1-1)  changes for 3d error samples 
 

 Compute the sample mean and sample standard deviation about the                           (G-3) 

sample mean for each error component over the 𝑘 samples of 𝜖𝑋 = [𝜖𝑥 𝜖𝑦 𝜖𝑧]𝑇: 

 𝑚𝑒𝑎𝑛_𝑥, 𝑠𝑖𝑔𝑚𝑎_𝑥, 𝑚𝑒𝑎𝑛_𝑦, 𝑠𝑖𝑔𝑚𝑎_𝑦 , 𝑚𝑒𝑎𝑛_𝑧, 𝑠𝑖𝑔𝑚𝑎_𝑧 

o both computation of the sample mean and sample standard deviation are unbiased 

estimates – see Section 5.2.1 of TGD 2b for the explicit calculations   

 𝑒𝑟 = ((𝑚𝑒𝑎𝑛_𝑥)2 + (𝑠𝑖𝑔𝑚𝑎_𝑥)2 + (𝑚𝑒𝑎𝑛_𝑦)2 + (𝑠𝑖𝑔𝑚𝑎_𝑦)2 + (𝑚𝑒𝑎𝑛_𝑧)2 + (𝑠𝑖𝑔𝑚𝑎_𝑧)2)
1

2 

 𝑒𝑟_𝑛𝑜𝑟𝑚 = (
(𝑚𝑒𝑎𝑛_𝑥)2+(𝑠𝑖𝑔𝑚𝑎𝑥)2)

𝜎𝑥
2 +

(𝑚𝑒𝑎𝑛_𝑦)2+(𝑠𝑖𝑔𝑚𝑎𝑦)
2
)

𝜎𝑦
2 +

(𝑚𝑒𝑎𝑛_𝑧)2+(𝑠𝑖𝑔𝑚𝑎𝑧)
2)

𝜎𝑧
2 )

1/2

 

 𝜖𝑟_𝑛𝑜𝑟𝑚99 = 𝜖𝑟_𝑛𝑜𝑟𝑚/3.368, 𝜖𝑟_𝑛𝑜𝑟𝑚90 = 𝜖𝑟_𝑛𝑜𝑟𝑚/2.500, 𝜖𝑟_𝑛𝑜𝑟𝑚50 = 𝜖𝑟_𝑛𝑜𝑟𝑚/1.538 

 test: 𝜖𝑟_𝑛𝑜𝑟𝑚99 < 1, 𝜖𝑟_𝑛𝑜𝑟𝑚90 < 1, and 𝜖𝑟_𝑛𝑜𝑟𝑚50 > 1 

 𝑟𝑒𝑝_𝑝𝑟𝑒𝑑_𝑟𝑎𝑑𝑖𝑎𝑙𝑋𝑋 = 𝜖𝑟_𝑛𝑜𝑟𝑚𝑋𝑋/ 𝜖𝑟, for plotting  

 In addition, 𝜖𝑟_𝑛𝑜𝑟𝑚𝑋𝑋 = 𝑒𝑟/𝑆𝐸_𝑋𝑋, where 𝑋𝑋 = 99,90,50, if scalar accuracy metrics are to 

be used 

Proceed with baseline accuracy and predicted accuracy validation for 3d errors using the resultant 3d 
radial error 𝑒𝑟 and the normalized 3d radial errors at the three different probability levels that 
correspond to the representative 3d error sample from each of the correlated sub-collections. 
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 Recommended Number of i.i.d. Error Samples including 

Pseudo-code 

This appendix supports Section 4.1 of the TGD 2c which contains an overview of the specification and 

validation of accuracy, and Section 4.1.1 in particular.  It presents additional results and documents the 

(non-optimized) MATLAB pseudo-code which the results were based on. 

Horizontal errors were simulated based on a mean-zero multi-variate Gaussian probability distribution; 

hence, results are approximate as this is an assumption.  Order statistics do not require an assumption 

regarding the underlying probability distribution, but for results based on Monte-Carlo simulation, a 

distribution must be specified.   

H.1 Validation pad versus number of error samples 

Simulation results correspond to the expected value of the 90% confidence-level or validation “pad” 

relative to the true 90th percentile of horizontal errors (aka “CE_true” in the code below).  Results also 

include the 90th percentile of the above pad, termed the 𝑚𝑎𝑥 _𝑟𝑒𝑙_𝑝𝑎𝑑.  Results are presented as a 

function of the assumed number of i.i.d. error samples used for the validation of accuracy: 25, 40, 55, 

100, 150, 200, 400. 

(Note: 50 was not included explicitly as a number of i.i.d.samples – it corresponds to a relatively small 

anomalous spike, i.e., the corresponding ordered sample # is 49 as it is the smallest ordered sample such 

that the probability of the lub exceeding the true 90th percentile is greater than 90%, in this case 95%; if 

ordered sample # 48 were selected instead, the corresponding probability would only be 88%.  Virtually 

all of the ordered samples selected for the other number of i.i.d. samples correspond to a probability 

between 91 – 93% (see TGD 2b, Table 5.3.3.2-2).   Also, this phenomena is inconsequential (probability 

not much bigger than 91%) if a relatively large number of samples. 

Consequently, interpolating 𝑚𝑎𝑥 _𝑟𝑒𝑙_𝑝𝑎𝑑 in the main body of this document between 40 and 55 

samples for 50 samples, we get about 35% and with that design margin a probability of only 80% of 

correctly passing validation.  If we allow a spike for 𝑚𝑎𝑥 _𝑟𝑒𝑙_𝑝𝑎𝑑 at an explicit number of samples 

equal to 50, we get a required design margin of about 42% to get 90% correctly passing validation using 

ordered sample #49. 

The above is relatively unimportant as we are looking for general principles regarding the recommended 

number of samples.   

The only alternative to this type of phenomena is to redefine the value of the lub as an interpolation of 

the value of the first ordered sample that exceeds 90% with the value of the previous ordered sample 

based on the difference of the two corresponding probabilities and such that the result corresponds to 

an approximate 90% probability.  This is a possible area for future research.   

Finally, as a reminder, for a given number of i.i.d. samples, the same ordered sample # is selected for 

each realization of the simulation, but has a different (lub) value associated with it.) 
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Prior to presenting the code, additional figures are first presented in order to supplement the results 

presented in Figure 4.1.1-2 of Section 4.1.1.  The latter assumed a reasonable value for “ratio”, or more 

precisely, the “sqrt_eigenvalue_ratio”, equal to 0.8.  Ratio is defined as the square-root of the minimum 

eigenvalue divided by the maximum eigenvalue of the corresponding true error covariance matrix – the 

smaller the value of ratio, the more elongated the corresponding error ellipse.  For example, a ratio 

equal to 0.50 corresponds to an error ellipse with a semi-major axis twice as long as its semi-minor axis  

(see Section 5.4.2 of TGD 2a).  Results are somewhat sensitive to the value of ratio.  Figures H-1 through 

H-4 below assume values for ratio equal to 1.0, 0.8, 0.5, and 0.25, respectively.   A ratio of 0.8 (and a 

slightly different scale for the y-axis) were used in Figure 4.1.1-2 in the main body of this document. 

  

Figure H-1: Expected value (blue) and 𝑍𝑍 = 90th percentile (red) of the validation pad relative to the 

true value 𝜖ℎ90 (%); ratio = 1.0. 
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Figure H-2: Expected value (blue) and 𝑍𝑍 = 90th percentile (red) of the validation pad relative to the 

true value 𝜖ℎ90 (%); ratio = 0.80. 

  
Figure H-3: Expected value (blue) and 𝑍𝑍 = 90th percentile (red) of the validation pad relative to the 

true value 𝜖ℎ90 (%); ratio = 0.50. 
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Figure H-4: Expected value (blue) and 𝑍𝑍 = 90th percentile (red) of the validation pad relative to the 

true value 𝜖ℎ90 (%); ratio = 0.25. 

 

Validation corresponds to horizontal accuracy, a 𝑋𝑋 = 90th percentile of horizontal radial error (𝜖ℎ90), a 

𝑌𝑌 = 90% confidence-level for the lub, and a 𝑍𝑍 = 90th percentile for the relative validation pad.  

However, the following pseudo-code can be modified in a straight-forward manner to accommodate any 

values of either 𝑋𝑋 or 𝑌𝑌 equal to 50, 90, or 95%, any positive value for 𝑍𝑍 less than 100%, as well as 

accommodate the validation of either vertical, horizontal, or 3d accuracy.   

Pseudo-code: 
% 10/01/16    "TGD2c_number_of_samples_investigation_3_more" 

  

%compute the expected (average)value and the ZZth percentile of the 90% 

%confidence-level or validation pad relative to the (true) eh_90 (aka 

%rel_pad) 

  

%the ratio of the sqrt of true eigenvalues does make somewhat of a  

%difference - the computed pad increases with ratio decrease 

  

ZZ=0.90  

  

ratio_case_number=2      %select default "shape" of true error covariance  

                         %matrix; value of 2 most representative for 

                         %ratio = square root of ratio of min-to-max  

                         %eigenvalues 

n_sample_cases=7 

  

sample_cases=[25,40,55,100,150,200,400] 

lub_90_cases=[25,39,53,95,141,186,369] %one-sided conf interval(order stats) 
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n_real=5000 

  

cov=eye(2); 

  

if(ratio_case_number==1) 

ratio=1; 

CE90_true=2.146*1;  %ratio=1 

end 

if(ratio_case_number==2) 

ratio=0.8; 

cov(2,2)=1.5625;%ratio=0.8 

CE90_true=1.9472*1.25;%ratio=0.25 

end 

if(ratio_case_number==3) 

ratio=0.5; 

cov(2,2)=4;%ratio=0.5 

CE90_true=1.7371*2;%ratio=0.5 

end 

if(ratio_case_number==4) 

ratio=0.25; 

cov(2,2)=16;%ratio=0.25 

CE90_true=1.6646*4;%ratio=0.25 

end 

  

ratio 

cov 

CE90_true %aka true eh90 

   

expected_pad=zeros(n_sample_cases,1); 

expected_pad_2=zeros(n_sample_cases,1); 

max_pad=zeros(n_sample_cases,1);%ZZth percentile of rel_pad 

  

for i=1:n_sample_cases    %number of samples value 

     

    n_samples=sample_cases(1,i); 

    lub_90_order=lub_90_cases(1,i); 

     

    pad_dist=zeros(n_real,1);  

    pad_sum=0; 

    pad_sum_2=0; 

     

    for j=1:n_real     %loop over realizations 

           

        h_radial=zeros(n_samples,1); 

         

        for k=1:n_samples     %loop over samples 

             

            X=cov^0.5*randn(2,1); 

            h_radial(k,1)=sqrt(X(1,1)^2+X(2,1)^2); 

             

        end %samples loop 

         

        h_radial=sort(h_radial); 

        lub_90=h_radial(lub_90_order,1); 

        best_est_90=h_radial(floor(0.5+0.90*n_samples),1); 
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        diff=(lub_90-CE90_true)/CE90_true; 

        diff_be=(lub_90-best_est_90)/best_est_90; 

         

            pad_sum=pad_sum+diff; 

            pad_sum_2=pad_sum_2+diff_be; 

            pad_dist(j,1)=diff;    

         

    end %real_loop 

     

    avg_pad=pad_sum/n_real; 

    avg_pad_2=pad_sum_2/n_real; 

        

    expected_pad(i,1)=100*avg_pad; 

    expected_pad_2(i,1)=100*avg_pad_2; 

     

    pad_dist=sort(pad_dist); 

    ik=floor(ZZ*n_real);   

    max_pad(i,1)=100*pad_dist(ik,1); 

     

     

end % sample cases loop 

  

expected_pad  %expected value of rel_pad 

expected_pad_2 %expected value of pad relative to best estimate of CE_90_true  

max_pad  %ZZ percentile of rel_pad 

  

max_x=sample_cases(n_sample_cases); 

n_samp=zeros(n_sample_cases,1);  

 for j=1:n_sample_cases 

       n_samp(j,1)=sample_cases(1,j); 

 end 

  

figure (1)  

clf  %this clears the figure from the previous run 

hold on 

  

plot(n_samp,max_pad,'r',n_samp,expected_pad,'b','LineWidth',2); 

  

axis([0 max_x 0 75]); 

title('"90th percentile" (r) & "expected value" (b) of relpad' ) 

xlabel('number of samples') 

ylabel('pad value relative to true eh90 in % (aka relpad)'); 

hold off 

 

H.2 Design Margin 

In addition, Section 4.1.1 illustrated the ability to determine the probability of successful validation as a 

function of the number of i.i.d. samples and an assumed value for “design margin”.  Validation is 

assumed to correspond to horizontal accuracy, and an 𝑋𝑋 = 90% percentile and 𝑌𝑌 = 90% 

confidence-level.  The value for “ratio” can be selected as well. 

The following output is from the first set of pseudo-code that follows: 

>> TGD2c_number_of_samples_investigation_design_margin 
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n_sample_case_number =  2 

design_margin =0.3000 

ratio_case_number  2 

sample_cases =25    50   100   150   200   400   600 

lub_90_order_cases =25    48    95   141   186   369   550 

n_samples =50 

lub_90_order = 48 

n_real =5000 

ratio =  0.8000 

cov =   1.0000         0 

             0            1.5625 

CE90_true = 2.4340 

CE90_spec =3.1642 

prob_success_validation =0.9066 
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Pseudeo-code: 

% "TGD2c_number_of_samples_investigation_design margin"    9/16/16 

  
%compute probability of passing validation (via Monte Carlo simulation) for  
%assumed XX=90% horizontal radial error percentile and  
%YY=90 confidence level used in the validation of accuracy; assume a  
%specific design margin 

  
%(Note: following algorithm/code easily modified to accomodate 
%specified XX=50, 90, or 95; specified YY= 50, 90, or 95;  
%specified vertical, horizontal, or 3d radial errors) 

  
%validation based on comparing lub at 90% confidence-level computed 
%using order stats to a CE90spec equal to the  
%true CE90 plus the design margin 

  
%specify the number of i.i.d. samples 

  
%specify the assumed design margin relative to the true value of the 90th 
%percentile of horizontal error 

  
%specify the assumed representative shape ("ratio") of the error covariance 
%matrix of ellipse, and corresponding true CE90 

  

  
n_sample_case_number=2   %select the number of samples from "sample cases"  
                         %below 

  
design_margin=0.30      %specify assumed design margin relative to true value  
                        %of 90% horizontal radial error percentile 

  
ratio_case_number=2      %select default "shape" of true error covariance  
                         %matrix; value of 2 most representative for 
                         %ratio = square root of ratio of min-to-max  
                         %eigenvalues 

  
sample_cases=[25,50,100,150,200,400,600] 
%lub_90_order)cases=[25,48,95,141,187,370,552] %two-sided conf interval 
lub_90_order_cases=[25,48,95,141,186,369,550] %one-sided conf interval  

  
n_samples=sample_cases(n_sample_case_number) 
lub_90_order=lub_90_order_cases(n_sample_case_number) 

  
n_real=5000 

  
cov=eye(2);   %2x2 corresponding to horizontal errors; overall common 
              %scaling will not affect output 

  
ratio=1; 
cov=eye(2); %ratio=1 
CE90_true=2.146*1;  %ratio=1 
if(ratio_case_number==2) 
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ratio=0.8; 
cov(2,2)=1.5625;%ratio=0.8 
CE90_true=1.9472*1.25;%ratio=0.25 
end 
if(ratio_case_number==3) 
ratio=0.5; 
cov(2,2)=4;%ratio=0.5 
CE90_true=1.7371*2;%ratio=0.5 
end 
if(ratio_case_number==4) 
ratio=0.25; 
cov(2,2)=16;%ratio=0.25 
CE90_true=1.6646*4;%ratio=0.25 
end 

  
ratio 
cov 
CE90_true 
CE90_spec=(1+design_margin)*CE90_true   

     
    count=0; 

     
    for j=1:n_real 

           
        h_radial=zeros(n_samples,1); 

         
        for k=1:n_samples 

             
            X=cov^0.5*randn(2,1); 
            h_radial(k,1)=sqrt(X(1,1)^2+X(2,1)^2); 

             
        end %samples loop 

         
        h_radial=sort(h_radial); 
        lub_90=h_radial(lub_90_order,1); 

         
       if(lub_90<CE90_spec) 
            count=count+1; 
        end 

          
    end %real_loop 

     
   prob_success_validation=count/n_real 
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Probability of Validaton passing, Type I errors, and Type II errors 

The following pseudo-code supports the generation of Figures 4.1.1-3 through 4.1.1-5:  

% 10/05/16    "TGD2c_number_of_samples_investigation_type_errors" 

  
%Monte Carlo simulation of probability of passing validation vs amount of  
%design margin; lub confidence level Y=90%. 

  
%By definition, CE90_spec=(1+design_margon)*eh_90, where eh_90 is the true 
%horizontal radial error (true CE90) 

  
%If validation passes and design margin less that true CE90: a Type II 

errors; 
%if validation does not pass and design margin greater than true CE90: a Type 
%I error. 

  
n_sample_cases=5 
sample_cases=[25,40,55,100,200] 
lub_90_cases=[25,39,53,95,186] %one-sided conf interval(order stats) 

  
n_test_cases=17 
test_min=-0.20 
test_step=0.05 

  
n_real=4000 

  
ratio_case_number=2      %select default "shape" of true error covariance  
                         %matrix; value of 2 most representative for 
                         %ratio = square root of ratio of min-to-max                          

%eigenvalues 
cov=eye(2); 
if(ratio_case_number==1) 
ratio=1; 
CE90_true=2.146*1;  %ratio=1 
end 
if(ratio_case_number==2) 
ratio=0.8; 
cov(2,2)=1.5625;%ratio=0.8 
CE90_true=1.9472*1.25;%ratio=0.25 
end 
if(ratio_case_number==3) 
ratio=0.5; 
cov(2,2)=4;%ratio=0.5 
CE90_true=1.7371*2;%ratio=0.5 
end 
if(ratio_case_number==4) 
ratio=0.25; 
cov(2,2)=16;%ratio=0.25 
CE90_true=1.6646*4;%ratio=0.25 
end 
ratio 
cov 
CE90_true %aka true eh90 
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test=zeros(n_sample_cases,n_test_cases); 

  
for i=1:n_sample_cases    %number of samples value 

     
    n_samples=sample_cases(1,i); 
    lub_90_order=lub_90_cases(1,i); 

     

     
    for j=1:n_real     %loop over realizations 

           
        h_radial=zeros(n_samples,1); 

         
        for k=1:n_samples     %loop over samples 

             
            X=cov^0.5*randn(2,1); 
            h_radial(k,1)=sqrt(X(1,1)^2+X(2,1)^2); 

             
        end %samples loop 

         
        h_radial=sort(h_radial); 
        lub_90=h_radial(lub_90_order,1); 

         
        for k=1:n_test_cases     %loop over test cases 

             
            temp=test_min+(k-1)*test_step; 
            spec=(1+temp)*CE90_true; 

             
            if(lub_90<spec) 
                test(i,k)= test(i,k)+1; 
            end 

             
        end    %test  cases  loop 

         
    end    %real   loop 

    

          
end   %samples loop 

         
test=100*test/n_real  

  
    rel_spec=zeros(n_test_cases,1); 
    test_25=zeros(n_test_cases,1); 
    test_40=zeros(n_test_cases,1); 
    test_55=zeros(n_test_cases,1); 
    test_100=zeros(n_test_cases,1); 
    test_200=zeros(n_test_cases,1); 

     
    for i=1:n_test_cases 
        rel_spec(i,1)=100*(test_min+(i-1)*test_step); 
    end     
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        for j=1:n_test_cases 
            test_25(j,1)=test(1,j); 
            test_40(j,1)=test(2,j); 
            test_55(j,1)=test(3,j); 
            test_100(j,1)=test(4,j); 
            test_200(j,1)=test(5,j); 
        end 

         
        figure (1) 
        clf  %this clears the figure from the previous run 
        hold on         
        plot(rel_spec,test_25,'r',rel_spec,test_40,'g',... 
            rel_spec,test_55,'c',rel_spec,test_100,'b',... 
            rel_spec,test_200,'m','LineWidth',3);  
        axis([-20 60 0 100]); 
        title('prob val. pass vs. design margin; nmbr samples: 25,r; 40,g; 

55,cy; b,100; m,200' ) 
        xlabel('design magin (percent)') 
        ylabel('prob of validation passing (percent)'); 
        hold off 

     
        figure (2) 
        clf  %this clears the figure from the previous run 
        hold on         
        plot(rel_spec,test_25,'r',rel_spec,test_40,'g',... 
            rel_spec,test_55,'cy',rel_spec,test_100,'b',... 
            rel_spec,test_200,'m','LineWidth',3);  
        axis([-20 0 0 100]); 
        title('prob of Type II error vs. design margin; nmbr samples: 25,r; 

40,g; 55,cy; b,100; m,200' ) 
        xlabel('design margin (percent)') 
        ylabel('prob of validation passing (percent)'); 
        hold off 

         

  
        for j=1:n_test_cases 
            test_25(j,1)=100-test(1,j); 
            test_40(j,1)=100-test(2,j); 
            test_55(j,1)=100-test(3,j); 
            test_100(j,1)=100-test(4,j); 
            test_200(j,1)=100-test(5,j); 
        end 

         
        figure (3) 
        clf  %this clears the figure from the previous run 
        hold on         
        plot(rel_spec,test_25,'r',rel_spec,test_40,'g',... 
            rel_spec,test_55,'cy',rel_spec,test_100,'b',... 
            rel_spec,test_200,'m','LineWidth',3);  
        axis([0 60 0 100]); 
        title('prob of Type I error vs. design margin; nmbr samples: 25,r; 

40,g; 55,cy; b,100; m,200' ) 
        xlabel('design margin (percent)') 
        ylabel('prob of validation not passing (percent)'); 
        hold off 
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 Conversions for the values of Specified Accuracy 

Section I.1 of this appendix addresses the conversion of root-mean-square error to scalar accuracy 

metrics.  Section I.2 addresses the conversion of scalar accuracy metrics from one probability level to 

another.  Both types of conversion are for specified accuracy requirements only (e.g., 𝐶𝐸90𝑠𝑝𝑒𝑐). 

I.1 Conversion of rmse to scalar accuracy metrics 

Some sensor systems, including some commercial satellite imaging systems, specify/advertise their 

accuracy in terms of root-mean-square error (rmse).  Its corresponding value was typically derived or 

“validated” through the use of sample statistics. 

In particular, for horizontal radial errors, rmse is defined as follows: 

𝑟𝑚𝑠𝑒 ≡ √𝐸{𝜖𝑥2 + 𝜖𝑦2} = √𝐸{𝜖ℎ2} ≠ 𝐸{√𝜖ℎ2} ,       (I-1) 

Where the random variable 𝜖ℎ ≡ √𝜖𝑥2 + 𝜖𝑦2 and 𝐸{} is the expected value operator. 

The sample rmse is computed as follows: 

𝑟𝑚𝑠𝑒𝑠 = √
∑ 𝜖ℎ𝑖

2𝑛
𝑖=1

𝑛
,           (I-2) 

where samples 𝜖ℎ𝑖 = √𝜖𝑥𝑖
2 + 𝜖𝑦𝑖

2  and 𝑛  is the total number of independent samples.   

For an accuracy specification based on 𝑟𝑚𝑠𝑒, validation would simply consist of computing 𝑟𝑚𝑠𝑒𝑠 and 

checking that it is less than or equal to an 𝑟𝑚𝑠𝑒𝑠𝑝𝑒𝑐, the latter set to the specified/advertised accuracy, 

possibly with an additional margin included.  This is not adequate for NSG purposes because a 

corresponding probability is not supplied as well as other limitations discussed below. 

In order to convert (sample) rmse to a corresponding probability-level, a probability distribution must be 

assumed, typically an independent mean-zero Gaussian distribution for both 𝜖𝑥 and 𝜖𝑦 with a common 

standard deviation 𝜎, and therefore, a Rayleigh distribution for the random variable 𝜖ℎ.  If so, and 

assuming a reasonable number of samples, 𝑟𝑚𝑠𝑒𝑠 corresponds to a value approximately equal to 

𝑟𝑚𝑠𝑒 = √2𝜎 with a corresponding probability of only 63% that an arbitrary horizontal radial error is less 

than or equal to it.   (This follows from evaluation of the Rayleigh cumulative distribution function for 𝜖ℎ 

which is equal to 𝑐𝑑𝑓(𝜖ℎ) = 1 − 𝑒
−𝑒ℎ2

2𝜎2 , and which, when evaluated at 𝑒ℎ = 𝑟𝑚𝑠𝑒 = √𝜎2 + 𝜎2 = √2𝜎, 

equals 0.632.) 

The above assumption regarding a probability distribution was required in order to generate a specific 

probability-level that corresponds to rmse.  It is a significant restriction and non-robust as compared to 

the recommended use of horizontal radial error 𝑋𝑋 percentiles (or equivalently, 𝐶𝐸𝑋𝑋) for the 

specification of accuracy, where 𝑋𝑋 (50, 90, or 95%) corresponds directly to the probability-level.  A 



NGA.SIG.0026.05_1.0_ACCSPEC 

 
 

271 

corresponding best estimate and least-upper-bound of the horizontal radial error 𝑋𝑋 percentile are 

computed using order statistics for the validation of accuracy.  Order statistics are independent of 

probability distribution (including a possible non-zero mean-value). 

Given geolocation accuracy that is specified/advertised in terms of rmse for a sensor, the best 

alternative for an NSG geolocation system that is to integrate this sensor into a geolocation capability is 

to first convert the rmse into an approximate scalar accuracy metric 𝐶𝐸𝑋𝑋 equivalent, and then proceed 

with the baseline method for the specification of accuracy and its validation using order statistics as 

documented in the main body of the document.   

Unfortunately, the above conversion must assume a specific probability distribution for underlying 

errors – this is unavoidable.  However, the good news is that after conversion, order statistics can be 

used for validation of the accuracy requirement.  In other words, validation based on sample rmse is 

avoided, as desired.  Validation based on order statistics is used instead, and can “detect” the effects of 

most larger-valued (and lower probability) horizontal radial errors, whereas validation based on sample 

rmse tends to mask their effect. 

We expand the conversion procedure discussed earlier corresponding to a Rayleigh distribution for the 

horizontal radial error random variable 𝜖ℎ in order to generate 𝐶𝐸𝑋𝑋, for 𝑋𝑋 = 50, 90, and 95%, which 

are equivalent to rmse.  That is, the underlying horizontal error 𝜖𝑋 = [𝜖𝑥 𝜖𝑦]𝑇 is still assumed to have 

an independent mean-zero Gaussian probability distribution with a common standard deviation 𝜎 for 

each error component or random variable 𝜖𝑥 and 𝜖𝑦.   

The easiest way to perform this expanded conversion is to use Table 5.4.2-1 of TGD 2a (predictive 

statistics), and observe that both eigenvalues of the corresponding 2𝑥2 covariance matrix for horizontal 

error 𝜖𝑋 = [𝜖𝑥 𝜖𝑦]𝑇 are equal to 𝜎2, and thus the square-root of the maximum eigenvalue equals 𝜎 

and the ratio of the square-root of the eigenvalues equals 1.  The table states that 𝐶𝐸50 = 1.1174𝜎, 

𝐶𝐸90 = 2.1460𝜎, and 𝐶𝐸95 = 2.4478𝜎.  And substituting 𝑟𝑚𝑠𝑒/√2 for 𝜎, we obtain the appropriate 

conversion factors of Table I.1-1.   
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Thus, for example:  

𝐶𝐸90 = 1.5174 𝑟𝑚𝑠𝑒.          (A-3) 

Table I.1-1: RMSE to Scalar Accuracy Metrics conversion factors 

 

Note that Table I.1-1 also presents conversion factors for rmse of vertical (radial) errors to 𝐿𝐸𝑋𝑋 and for 

rmse of (3d) spherical radial errors to 𝑆𝐸𝑋𝑋.  For vertical radial errors, 𝑟𝑚𝑠𝑒 ≡ √𝜖𝑧2, and for (3d) 

spherical radial errors, 𝑟𝑚𝑠𝑒 ≡ √𝜖𝑥2 + 𝜖𝑦2 + 𝜖𝑧2.   

The conversion factors in Table I.1-1 for 𝐿𝐸𝑋𝑋 can be read directly from Table 5.4.1-1 of TGD 2a, and 

the conversion factors for 𝑆𝐸𝑋𝑋 can be read directly from Tables 5.4.3-1,2,3 of TGD 2a using the same 

procedure as for 𝐶𝐸𝑋𝑋, but also accounting for the square-root of the eigenvalues equal to 𝑟𝑚𝑠𝑒/√3 

instead of 𝑟𝑚𝑠𝑒/√2. 

One last comment regarding rmse conversions in general, using horizontal radial error as an example:  It 

is conceivable that both the rmse of x-component error and the rmse of y-component error are 

provided instead of the rmse of horizontal radial error.  If so, simply equate the latter with the root-sum-

square of the former, i.e., 𝑟𝑚𝑠𝑒 𝜖ℎ = √(𝑟𝑚𝑠𝑒 𝜖𝑥)2 + (𝑟𝑚𝑠𝑒 𝜖𝑦)2.  Furthermore, in the unlikely event 

that instead of the rmse of x-component error, its non-zero sample mean 𝜇𝑥_𝑠 and its sample standard 

deviation 𝜎𝑥_𝑠 are provided instead, first compute 𝑟𝑚𝑠𝑒 𝜖𝑥 = √𝜇𝑥_𝑠
2 + 𝜎𝑥_𝑠

2  .  (A similar computation is 

applicable to the y-component of error as well.) 

I.2 Conversion of scalar accuracy metrics from one probability level to 

another 

It is possible that a scalar accuracy metric is to be converted from one probability level to another for 

convenience in order to supply a scalar accuracy metric for the specification of accuracy.  The following 

conversion factors (Table I.2-1) are approximate in that they assume an underlying mean-zero Gaussian 

probability distribution for the underlying error components (random variables) 𝜖𝑥, 𝜖𝑦, and/or 𝜖𝑧 which 

are independent (uncorrelated) and with equal variances (standard deviations).   They are based on the 

partial results of Section 5.4 of TGD 2a and correspond to predictive statistics. 

  

XX = 50% XX = 90% XX = 95%

LE_XX 0.6745 1.6499 1.9600

CE_XX 0.8325 1.5175 1.7309

SE_XX 0.8881 1.4435 1.6140
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Table I.2-1: Conversion of Scalar Accuracy Metrics from one probability level to another 

 

Thus, for example, using Table I.2-1: 

LE_95 = 1.1880 x LE_90, and 

CE_90 = 0.8767 x CE_95. 

Conversions are to be applied for the specification of accuracy, not for the validation of specified 

accuracy.  That is, they are not to be applied to the best estimate or least-upper-bound of radial error 

percentile XX generated using order statistics to a best estimate or least-upper-bound of radial error 

percentile YY.   

For example, although 𝜖ℎ𝑋𝑋, the XX percentile of horizontal (radial) error, is defined equivalent to 

𝐶𝐸𝑋𝑋, the scale factors associated with 𝐶𝐸𝑋𝑋 to 𝐶𝐸𝑌𝑌 (Table I.2-1) are not applicable to their radial 

error percentile counterparts generated using order statistics.  For example, assuming 100 samples, the 

best estimate of the 50th percentile of horizontal (radial) error is equal to the value of the 50th ordered 

sample, and independent of the actual values of the 51st to 100th ordered samples.  The latter contain 

the 90th ordered sample which is equal to the best estimate of the 90th percentile of horizontal (radial) 

error– the two best estimates do not scale. 

 

 

 

 

FROM:

LE_50 LE_90 LE_95 CE_50 CE_90 CE_95 SE_50 SE_90 SE_95

LE_50 1 2.4461 2.9059

LE_90 0.4088 1 1.1880

LE_95 0.3441 0.8418 1

CE_50 1 1.8227 2.0790

CE_90 0.5486 1 1.1406

CE_95 0.481 0.8767 1

SE_50 1 1.6255 1.8174

SE_90 0.6152 1 1.1181

SE_95 0.5502 0.8944 1

TO:


